TERRAPIN MONITORING AT THE PAUL S. SARBANES ECOSYSTEM RESTORATION PROJECT AT POPLAR ISLAND

2014

Final Report submitted to the United States Army Corps of Engineers

Willem M. Roosenburg, Sarah R. Kitson, Rene Harding, and Alayna F. Tokash
Department of Biological Sciences
Ohio University
Athens Ohio 45701

740-593-9669 roosenbu@ohio.edu

Ohio University graduate and undergraduate students celebrate the capture of terrapins in the Cell 5AB perimeter canal during dewatering operations.

TABLE OF CONTENTS

Background
Methods 3
Results and Discussion
Conclusions
Recommendations
Acknowledgements
Literature Cited
Appendix 1 – Table of 2014 Terrapin Nests on Poplar Island
Appendix 2 – Table of 2014 Terrapin Hatchlings on Poplar Island 37
Appendix 3 – Table of 2014 Headstart Terrapins from Poplar Island
LIST OF FIGURES
Figure 1 – Map of Poplar Island with blue lines indicating areas surveyed for nesting
activity daily by the research team4
Figure 2 – A terrapin nest overgrown by trailing fuzzy bean in the Notch. The nest is
located between the red flags
Figure 3 – The number of nests in each of the major nesting areas for each year of the
study and the proportion of nests surviving
Figure 4 – Terrapin nesting locations on Poplar Island during 2014
Figure 5 - The relationship between average egg mass by clutch and average
hatchling mass by clutch for ten years on Poplar Island. The relationship is similar
for all years except 2010 when the slope of the relationship decreased
Figure 6 –One of the cross dikes in Cell 1 after being rototilled to reduce vegetation
and enhance the area to be attractive for nesting terrapins
Figure 7 – Shoreline stabilization and the creation of terrapin nesting habitat in Calvert County, Maryland – Red dots indicate terrapin nests
LIST OF TABLES
Table 1 – Summary of the diamondback terrapin nests found on Poplar Island and
their fate from 2002 to 2014
Table 2 – Average and standard error of clutch size, clutch mass, and egg mass from
2004-2014 on Poplar Island
Table 3 – Number of hatchlings, mean and standard error of carapace length, and
mean and standard error of mass of terrapin hatchlings caught on Poplar Island from
2002-2014
Table 4 – Nest fate and overwintering percentage of the Cell 5 and Notch nests during
the 2006 –2014 nesting seasons on Poplar Island

BACKGROUND

The Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island (Poplar Island) is a large-scale project that is using dredged material to restore Poplar Island in the Middle Chesapeake Bay. As recently as 100 years ago, the island was greater than 400 hectares and contained uplands and high and low marshes. During the past 100 years, the island eroded and by 1996 only three small islands (<4 hectares) remained before the restoration project commenced. The project sponsors, the United States Army Corps of Engineers (USACE) and the Maryland Port Administration (MPA), are rebuilding and restoring Poplar Island to a size similar to what existed over 100 years ago. A series of stone-covered perimeter dikes facing the windward shores of Poplar Island were erected to prevent erosion. Dredged material from the Chesapeake Bay Approach Channels to the Port of Baltimore is being used to fill the areas within the dikes. The ultimate goals of the project are: to restore remote island habitat in the mid-Chesapeake Bay using clean dredged material from the Chesapeake Bay Approach Channels to the Port of Baltimore; optimize site capacity for clean dredged material while meeting the environmental restoration purpose of the project; and protect the environment around the restoration site. Ultimately, this restoration will benefit the wildlife that once existed on Poplar Island.

After completion of the perimeter dikes in 2002, diamondback terrapins, *Malaclemys terrapin*, began using the newly formed habitat as a nesting site (Roosenburg and Allman 2003; Roosenburg and Sullivan, 2006; Roosenburg and Trimbath, 2010; Roosenburg et al., 2004; 2005; 2007; 2008; 2010; 2012; 2014). Prior to the restoration, the persistent erosion of Poplar Island and nearby islands had greatly reduced the terrapin nesting and juvenile habitat in the Poplar Island archipelago. As a consequence, terrapin populations in the area likely declined due to emigration of adults and reduced recruitment (successful reproduction) because of limited high quality nesting habitat. By restoring the island and providing nesting and juvenile habitat, terrapin populations in the archipelago could increase. The newly restored wetlands could provide high quality juvenile habitat while the accessible sandy areas could increase nesting activity.

Poplar Island provides a unique opportunity to understand how large-scale ecological restoration projects affect terrapin populations and turtle populations in general. In 2002, a long-term terrapin monitoring program was initiated to document terrapin nesting on Poplar Island. By monitoring the terrapin population on Poplar Island, resource managers can learn how creating new terrapin nesting and juvenile habitat affects their populations. This information will contribute to understanding the ecological quality of the restored habitat on Poplar Island, as well as understanding how terrapins respond to large-scale restoration projects. The results of terrapin nesting surveys and hatchling captures from 2004 – 2014 are summarized herein to identify how diamondback terrapins use habitat created by the restoration of Poplar Island and how it has changed during that time.

The 2014 Poplar Island Framework Monitoring Document (FMD; Maryland Environmental Service, 2014) identifies three reasons for terrapin monitoring:

- 1) Quantify the use of nesting and juvenile habitat by diamondback terrapins on Poplar Island, including the responses to change in habitat availability as the project progresses.
- 2) Evaluate the suitability of terrapin nesting habitat by monitoring nest and hatchling viability, recruitment rates, and hatchling sex ratios.
- 3) Determine if the project affects terrapin population dynamics by increasing the available juvenile and nesting habitat on the island.

The terrapin's charismatic nature also makes it an excellent species to use as a tool for environmental outreach and education. Some of the terrapin hatchlings that originate on Poplar Island participate in an environmental education program in the Maryland schools through the Arlington Echo Outdoor Education Center (AE), Maryland Environmental Service (MES), and the National Aquarium in Baltimore (NAIB). These programs provide students with a scientifically-based learning experience that also allows Ohio University (OU) researchers to gather more detailed information on the nesting biology of terrapins, in addition to providing an outreach and education opportunity for the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island. As part of the terrapin research program at Poplar Island, OU researchers are collaborating with staff at AE, MES, and the NAIB to foster both a classroom and field experience that uses terrapins to teach environmental education and increase awareness for Poplar Island. The students raise the terrapins throughout their first winter, during which time they attain a body size that is comparable to 2-5 year old wild individuals, thus "headstarting" their growth. The specific goals of the terrapin outreach program are:

- 1) Provide approximately 250 terrapin hatchlings yearly to AE, MES, and the NAIB to be raised in classrooms.
- 2) Obtain sex ratio data from the hatchlings as increased body size allows.
- 3) Conduct a scientifically-based program to evaluate the effectiveness of headstarting.

METHODS

Specific details of differences in surveys and sampling techniques used during 2002–2014 can be found in Roosenburg et al. (2014). Since 2004, survey efforts to find nests have been consistent in the Notch, outside Cell 5, and outside Cell 3. Completion of the perimeter dike of Cell 6 in 2008 has eliminated nesting activity there, and the completion of Cells 4D, 3D, 1A, 1B, and 1C have resulted in nesting along the interior perimeter and cross dikes of these cells, therefore mandating surveys of these recently completed nesting areas. Details of the general survey methods and specific techniques employed during 2014 are described below.

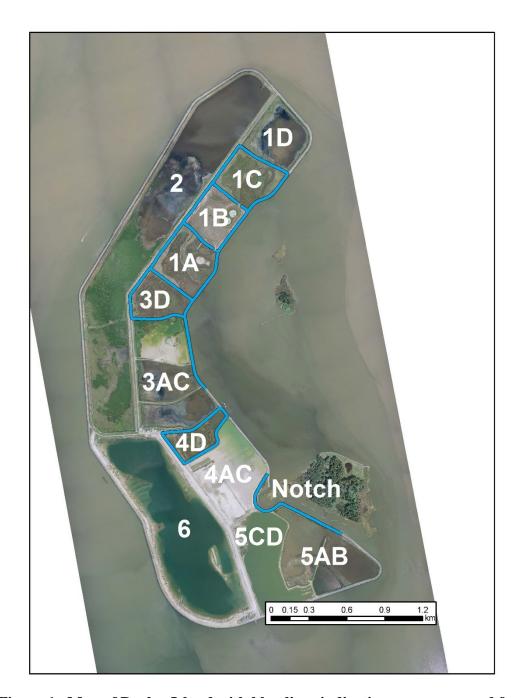


Figure 1. Map of Poplar Island with blue lines indicating areas surveyed for nesting activity daily by the research team.

Identification of terrapin nests: The first terrapin nest of the 2014 field season was located on 28 May 2014 and the last nest confirmed less than 24 hours old was found on 24 July 2014. OU researchers surveyed the following areas on Poplar Island daily (Monday – Friday): beaches in the Notch area (surrounding the northwestern tip of Coaches Island near Cell 4ABC [labeled 4AC in figure]), areas between Coaches Island and Poplar Island (outside of Cell 5AB), the beach outside the dike near Cell 3AC in Poplar Harbor, and interior perimeter dikes of Cells 4D, 3D, 1A, 1B, and 1C (Figure 1).

A geographic positioning system (GPS) recorded nest positions and survey flags identified the specific nest locations. Upon discovering a nest, researchers examined the eggs to determine the age of the nest. If the eggs were white and chalky, the nest was greater than 24 hours old and no further excavation was conducted because of increased risk of rupturing the allantois membrane and killing the embryo. Researchers excavated recent nests (less than 24 hours old; these nests were identified by a pinkish translucent appearance of the eggs) to count the eggs, and from 2004 through 2014 weigh the individual eggs on a portable jewelers balance. Researchers marked nests with four 7.5 cm² survey flags, and beginning in 2005, laid a 30 cm by 30 cm, 1.25 cm² mesh rat wire on the sand over the nest to deter avian nest predators, primarily crows.

Monitoring nesting and hatching success: After 45 to 50 days of egg incubation, researchers placed an aluminum flashing ring around each nest to prevent emerging hatchlings from escaping. Anti-predator (1.25 cm²) wire also was placed over the ring to prevent predation of emerging hatchlings within the ring. Beginning in late July, the researchers checked ringed nests at least once daily for emerged hatchlings. Researchers brought newly emerged hatchlings to the onsite storage shed where they measured and tagged the hatchlings.

Researchers excavated nests ten days after the last hatchling emerged. For each nest, they recorded the number of live hatchlings, dead hatchlings that remained buried, eggs with dead embryos, and eggs that showed no sign of development. To estimate hatching success, researchers compared the number of surviving hatchlings to the total number of eggs from only the nests that were excavated within 24 hours of oviposition, which provided an exact count of the number of eggs. Additionally, researchers determined if the nest was still active by looking for eggs that appeared healthy and had not completed development. The researchers allowed nests containing viable eggs or hatchlings that had not fully absorbed their yolk sac to continue to develop; however, researchers removed fully developed hatchlings from nests, further described in the next section.

Capture of hatchlings: Researchers collected hatchlings from ringed nests and also from un-ringed nests that were discovered by hatchling emergence (hatchling tracks or emergence hole). Researchers confirmed all nests discovered by emerging hatchlings by the presence of egg shells when excavated. Additionally, researchers found a small number of hatchlings on the beach in the Notch which they collected by hand and processed. Because 46 nests had begun to emerge after 1 October or had not produced hatchlings by 1 November 2014, these nests were left to overwinter and were excavated in the spring of 2015. During the spring of 2015 researchers visited the island three times weekly to catch emerging hatchlings through the spring emergence season.

Measuring, tagging, and release of hatchlings: Researchers brought all hatchlings back to the MES shed onsite where they placed them in plastic containers with water until they were processed (measured, notched, and tagged), usually within 24 hours of capture. Researchers marked hatchlings by notching with a scalpel the 12th right marginal scute and 9th left marginal scute, establishing the cohort identification (ID) 12R9L for 2014 fall

emerging hatchlings. OU personnel gave spring 2015 emerging hatchlings a different cohort ID of 2R11L (notching the 2nd right marginal scute and 11th left marginal scute) to distinguish fall 2014 from spring 2015 emerging hatchlings upon later recapture. Researchers implanted individually marked coded wire tags (CWTs, Northwest Marine Technologies®) in all hatchlings. The CWTs were placed subcutaneously in the right rear limb using a 25-gauge needle. The CWTs should have high retention rates (Roosenburg and Allman, 2003) and researchers will be able to identify terrapins originating from Poplar Island for the lifetime of the turtle by detecting tag presence using a Northwest Marine Technologies® V-Detector.

Researchers measured plastron length, carapace length, width, and height ($\pm\,0.1$ mm) with digital calipers, and mass ($\pm\,0.1$ g) of all hatchlings with a jewelers balance. Additionally, they checked for anomalous scute patterns and other developmental irregularities. Following tagging and measuring, researchers released all hatchlings in either Cell 4D, Cell 3D, Cell 1A, or Cell 1C. On several occasions, large numbers (>50) of hatchlings were simultaneously released but dispersed around the cell to minimize avian predation.

Measuring, tagging, and release of juveniles and adults: All juvenile and adult turtles captured on the island were transported to the onsite shed for processing. Researchers recorded plastron length, carapace length, width, height, head width (± 1 mm), and mass (± 1 g) of all juveniles and adults. Passive Integrated Transponder (PIT, Biomark Inc.) tags were implanted in the right inguinal region; in the loose skin anterior to the hind limb where it meets the plastron. Additionally, a monel tag (National Band and Tag Company) was placed in the 9th right marginal scute. The number sequence on the tag begins with the letters PI, identifying that this animal originated on Poplar Island.

Terrapin Education and Environmental Outreach Program: During 2014, 234 Poplar Island hatchlings were distributed to the terrapin education and environmental outreach programs at AE, the NAIB, and MES. In April 2015, researchers traveled to AE and the NAIB to implant PIT tags in 220 headstarted terrapins. One terrapin died before distribution to the schools and 13 died during the rearing. Researchers also measured, weighed, and determined the sex (if possible) of all animals at this time. From late May through July 2015, the headstarted terrapins were returned to Poplar Island and released.

Data Analysis and Processing: Researchers summarized and processed all data using Microsoft Excel® and Statistical Analysis System (SAS). Graphs were made using Sigmaplot®. Institutional Animal Care and Uses Committee at OU (IACUC) approved animal use protocols (IACUC protocol # 13-L-023) and the Maryland Department of Natural Resources (MD DNR) – Wildlife and Heritage Service issued and annually renewed Scientific Collecting Permit Number SCO-53958 to Willem M. Roosenburg (WMR).

Table 1. Summary of the diamondback terrapin nests found on Poplar Island and their fate
from 2002 to 2014.

YEAR	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
TOTAL NESTS	68	67	182	282	191	225	218	189	166	211	200	174	165
NESTS THAT PRODUCED HATCHLINGS	38	50	129	176	112	166	180	145	125	180	138	150	131
NESTS THAT DID NOT SURVIVE	1	7	17	70	69	44	28	34	42	20	51	21	29
DEPREDATED (ROOTS OR ANIMAL)*	0	0	12	46	54	18	12	10	9	24/6	81/38	19/7	16/9
WASHED OUT**	1	6	3	11	13	2	6	3	4	3	4	5/2	22/8
UNDEVELOPED EGGS, WEAK SHELLED EGGS, OR DEAD EMBRYOS	0	1	0	12	1	19	10	12	11	5	6	7	4
DESTROYED BY ANOTHER TURTLE OR NEST WAS IN ROCKS	0	0	2	0	0	3	0	0	2	0	2	0	0
DESTROYED BY BULLDOZER	0	0	0	1	0	0	0	0	0	0	0	0	0
DEAD HATCHLINGS	0	0	0	0	1	2	0	2	6	3	0	6	2
FATE OF NEST UNKNOWN	29	10	36	36	10	19	10	10	17	9	7	0	5

^{*}The first value listed is the total number of nests that experienced predation; the second value is the number of nests that were partially depredated. Fully depredated nest are the difference. **The first value indicates the total number of nests that experienced a wash out event; the second value identifies the number of nests that were washed out yet still produced hatchlings that emerged before or during the washout.

Figure 2. A terrapin nest overgrown by trailing fuzzy bean in the Notch. The nest is located between the red flags.

RESULTS AND DISCUSSION

Nest and Hatchling Survivorship: During the 2014 terrapin nesting season (28 Mayend of July), the researchers located 165 nests on Poplar Island (Table 1, raw nest data provided in Appendix 1). Of these 165 nests, 131 successfully produced hatchlings while 29 nests did not produce hatchlings and the fate of five nests could not be determined (unknown). Successful nests includes nests with egg shells that are clearly indicative of hatching. No false nests without eggs were found in 2014. Predators destroyed nine nests completely and another six nests were partially depredated (Table 1);

Figure 3. The number of nests in each of the major nesting areas from 2003-2014 (top graph) and the proportion of nests surviving (bottom graph).

however, four of the partially depredated nests still produced some hatchlings. During 2014, one nests had thin shelled eggs which produced hatchlings and three nests in which all the eggs did not develop. Seventy nests had a least one egg that did not develop. There was a single nest with a micro egg that also had normal eggs. Twentytwo nests were washed out or were submerged by unusually high spring tides. Fourteen of the nests, mostly on the beach outside Cell 3, could not be found after flooding because the eggs had been washed out completely. The remaining eight nests were washed out after some hatchlings had emerged or researchers found empty egg shells and the hatchlings had clearly emerged during the flooding.

Poplar Island

has averaged 200 terrapin nests per year since 2004 (Table 1); 2014 was a lower than average year deviating by 35 nests from the mean and was the lowest year since 2004, when comprehensive nest monitoring began. During 2010 sand stockpiling in Cell 4ABC had resulted in the buildup of open sandy areas in the north side of the Notch that created attractive nesting habitat. This resulted in increased nesting in that area since 2011; however, the proliferation of the annual trailing fuzzy bean (TFB; *Strophostyles hevola*) overgrows much of these open sandy areas as the nesting season

Figure 4. Terrapin nesting locations on Poplar Island during 2014.

progresses. By July these open nesting areas were completely overgrown making it difficult to find nests. The TFB also overgrew known nests in these open areas (Figure 2). The proliferation of the TFB, particularly in the Notch area, is contributing to the decline of either the actual number of nests or the ability to detect nests within the vegetation. However, the excellent survival of nests in the Notch suggests that the trailing fuzzy bean is not detrimental to nest survival (Figure 3). The open nesting habitat in the Notch may be contributing to the continued decline of nesting on the outside of the Cell 5 perimeter

dike, where the presence of vegetation is not as attractive to nesting terrapins. Nonetheless, the area between Poplar Island and Coaches Island, which includes the Notch and Cell 5, remains the primary terrapin nesting area on Poplar Island (Figures 3) and 4). The completion of additional wetland cells has led to the expansion of nesting on other parts of the island (Figures 3 and 4). During 2014, nesting was observed on all the cross dikes adjacent to completed cells on the northern half of the island (Cells 3D, 1A, 1B, and 1C). Furthermore, MES rototilled sections of the cross dikes between Cells 1A and 1B and Cells 1B and 1C with the intention of creating open nesting habitat that would attract terrapins. Although some nests were observed in these areas, the number of nests was fewer than anticipated. Because areas with dense vegetation typically support fewer terrapin nests in the Chesapeake Bay region (Roosenburg, 1996) and pose a threat to terrapin nests because the roots of grasses can either entrap hatchlings or prey directly on the eggs (Stegmann et al., 1988), OU identified a need to maintain open areas for terrapin nesting on both inside the cells and on the exterior of the perimeter dike of Poplar Island. Although nesting is expanding across the island, it remains rather diffuse in the island interior, while the areas on the outside (Cell 3) or accessible areas of the perimeter dike (Notch and Cell 5) remain the areas with highest nesting density. This persistent observation suggests that available nesting habitat visible and accessible from the exterior of the island constitutes the most highly used and preferred.

Survivorship of nests (the proportion of nests producing hatchlings) in the outer perimeter of Cell 5 declined slightly during 2014 compared to the previous year. In 2012 nest predation in this area was high (Figure 3) because of predation by deer mice (*Peromyscus maniculatus*). During 2013 and 2014 nest survivorship in this area increased and there were no indications of predation by deer mice. Deer mice typically partially depredate nests and leave a characteristic excavation that distinguishes their predation from that of the Eastern Kingsnake (*Lampropeltis getula*). In 2014, kingsnakes depredated five nests on Poplar Island, two of them partially. Researchers also documented for the first time a Black Rat Snake (*Pantherophis obsoleta*) eating a terrapin nest. Finally, one nest was destroyed by ants that were eating the eggs.

Researchers placed wire mesh over the nests to prevent crow predation during 2014. This mechanism was not successful in deterring predation by Eastern Kingsnakes on terrapin nests. Researchers captured 10 kingsnakes on Poplar Island during 2014, five of these were recaptures from previous years. One individual was found dead on the road. These data indicate that kingsnakes have colonized Poplar Island and are established. The capture of one neonate suggests that there is successful reproduction on the island. Kingsnakes, in general, feed on other reptiles (lizards and snakes). Kingsnakes feeding on turtle eggs has been documented previously; however, it is likely that the primary prey attracting kingsnakes to Poplar Island are the abundant Northern Watersnakes (*Nerodia sipedon*) living in the rock jetties surrounding the island.

Mean within nest survivorship (proportion of eggs within nest surviving for nests in which all eggs are known and their fate can be accurately determined including depredated nests if the number of eggs is known) was 0.623 during 2014. This is similar to 2013 and 2012, where mean within nest survivorship was 0.555 and 0.597

respectively, but well above the low observed in 2010 of 0.429.

The fluctuation in survivorship across years is most likely due to the fluctuation of temperature and rainfall among years in which hotter, dryer summers reduced survivorship within nests, and wetter summers resulted in higher survivorship. The 2010 nesting season was the hottest and driest on record, while 2012-2014 had considerably more rainfall during the summer incubation periods. During hot and dry conditions soil water potentials drop and eggs can become desiccated and die as a consequence. In 2014, two were discovered where all the eggs were dead and intact, which is an

Table 2	Table 2. Average and standard error of clutch											
size, clutch mass, and egg mass from 2004-2014 on												
	Poplar Island.											
V = = =	Olastala Olas	Clutch	Egg									
Year	Clutch Size	Mass (g)	Mass (g)									
2004	13.68	127.55	9.80									
2004	(0.379)	(4.372)	(0.110)									
2005	13.62	133.11	9.92									
2005	(0.245)	(2.541)	(0.087)									
2006	13.48	133.28	9.97									
2006	(0.248)	(2.570)	(0.081)									
2007	13.11	127.4	9.86									
2007	(0.241)	(2.502)	(0.086)									
2008	12.90	128.0	10.06									
2006	(0.260)	(2.890)	(0.092)									
2009	13.85	137.1	10.02									
2009	(0.242)	(2.335)	(0.091)									
2010	13.33	133.1	10.10									
2010	(0.364)	(3.850)	(0.198)									
2011	14.08	131.5	9.46									
2011	(0.290)	(2.688)	(0.142)									
2012	13.67	131.7	10.13									
2012	(0.309)	(3.697)	(0.162)									
2012	12.95	124.7	9.74									
2013	(0.268)	(2.796)	(0.129)									
2014	13.38	130.0	9.86									
2014	(0.341)	(3.306)	(0.125)									

indication of failure to complete development. This can be caused by over-heating, dehydration, or infertility. There were several nests completely lost that were washed out by high tides or eaten by predators. Vegetation on the nesting beaches also can increase within nest mortality by dehydrating eggs or penetrating the shell. Vegetation competes with turtle eggs for soil moisture; plants can tolerate lower soil water potentials than eggs, and the roots are able to encase eggs and draw the moisture from them (Stegmann et al., 1988).

Researchers noted one nest with thin-shelled or kidney-shaped eggs on Poplar Island in 2014 and two nests with a similar condition in 2013. Thin-shelled eggs have also been observed in the Patuxent River terrapin population (Roosenburg, personal observation). Only a few of the eggs were thin-shelled in the 2014 clutch and it still successfully produced hatchlings. In previous years, OU researchers have noted nests in which all of the eggs have thin shells; these eggs are frequently broken during oviposition and seldom hatch. The cause of the thin-shelled eggs is unknown at this time, but it is not unique to Poplar Island. Two possible causes that remain to be evaluated include a toxicological effect by a factor ubiquitous in the Chesapeake Bay, or a resource limitation making the females unable to sequester sufficient amounts of calcium to shell the eggs.

Reproductive Output: Clutch size (Analysis of Variance; ANOVA, $F_{10,1051} = 1.65$, P > 0.08) and clutch mass (ANOVA, $F_{10,1054} = 1.51$, P > 0.13) did not differ among years.

Average egg mass (ANOVA, $F_{10,1054} = 2.44$, P < 0.005) did differ among years (Table 2). Average clutch size varies by nearly one egg among years ranging from a low of 12.95 to a high of 14.08, but this range is not significant. Average egg mass varies from 9.46 to 10.13 g among years. Interestingly, total clutch mass remains very consistent differing less than the average weight of a single egg. This consistency in total clutch mass suggests that females fine tune their total reproductive output but that number of eggs per clutch or egg size can be more plastic than total clutch mass. Researchers can only speculate what may be driving the variation in reproductive output observed among years but suggest two potential causes. The first is underlying environmental variation (e.g. temperature or resources) that may result in different allocation strategies that determine the number and size of eggs and the total clutch mass. As the number of terrapins continues to increase in the archipelago, competition for food may be intensifying and thus having an indirect effect on the reproductive characteristics as resources become limited. A study investigating environmental correlates of reproductive characteristics could reveal significant patterns associated with environmental variation, resource availability, and competitive interactions. Second, there may be changes in the demographic structure in the Poplar Island terrapin population such that the strong recruitment driven by the creation of new and predator free nesting habitat has resulted in a greater number of younger females. Younger females may have different reproductive characteristics than the older females that dominated the population in the early years of the project. Additionally, younger females may be more variable in their production of eggs. Being able to identify clutches of known-aged females could address these questions. Monitoring during 2014 recorded one 2.0 g 'micro egg' in a single nest with seven eggs. The micro egg was observed to be white, translucent, and misshapen. Micro eggs may be produced by younger females or perhaps by headstarted individuals that may be at the appropriate size of maturity but physiologically are not yet mature. Continued monitoring of terrapin reproductive biology on Poplar Island will be important in determining the underlying causal factors of variation in reproductive output.

Hatchlings: Researchers captured 886 hatchlings in the 2014 nesting season. Of these, 24 were dead or died shortly after processing, 869 were tagged and notched, six died after tagging, and one hatchling died during transport to the headstart program before distribution to schools, leaving 862 terrapin hatchlings and headstarts on Poplar Island between 31 July 2014 and July 2015 (Table 3; Appendix 2). Eight hatchlings (four of which were dead) were caught by hand on the nesting beach along the Notch and Cell 5. All other hatchlings were captured in the rings surrounding the nests. Researchers found 19 nests after 24 July 2014 through 26 May 2015 that were discovered either when the hatchlings emerged or predators had excavated the nests and left egg shells. Hatchling carapace length and mass were similar among all years of the study (Table 3). Since 2002, 14,330 hatchlings have been captured, tagged, and notched on Poplar Island (Table 3, these values include animals that were put into the headstart program).

Hatchling recruitment decreased by almost 300 from 2013 to 2014, reflecting the decrease in the number of nests discovered and decrease in nest survival, particularly in Cell 3 in 2014 due to nests washing out. Mouse predation decreased recruitment in 2012, but recruitment increased in 2013 when mouse predation was nearly absent. Mouse

predation was not detected in 2014, although there were fewer nests discovered than in 2012 and 2013 (Table 1). All other nesting areas had nest survival rates that were comparable to previous years (Figure 3). The relationship between average clutch egg mass and average clutch hatchling mass (HM = EM*0.655 + 0.654; $r^2 =$ 0.610) suggests that incubation conditions were closer to average temperature and rainfall during 2014. Only in 2008 and 2010, summers when incubation conditions were dryer and warmer than average due to lower rainfall and higher temperatures, did the relationship between egg and hatchling mass differ (ANOVA; $F_{10.4147} = 4.74$; P <0.0001), resulting in larger eggs producing smaller than normal hatchlings (Figure 5). These findings suggest that hatchling size is affected by both egg size and the environmental conditions experienced during incubation.

Table 3. Number of hatchlings, mean and standard error of carapace length, and mean and standard error of mass of terrapin hatchlings caught on Poplar Island from 2002-2014.

_	1 Upiai 1816	anu 110m 2002-201	
YEAR	NUMBER OF HATCHLINGS	MEAN CARAPACE LENGTH (MM)	MEAN MASS (G)
2002	565	31.28 (1.61)	7.52 (0.96)
2003	387	31.13 (1.50)	7.50 (0.99)
2004	1,337	31.57 (1.47)	7.61 (0.89)
2005	1,526	30.98 (1.94)	7.45 (1.10)
2006	855	30.95 (1.71)	7.38 (1.01)
2007	1,616	31.26 (1.72)	7.50 (0.91)
2008	1,443	31.03 (1.34)	7.42 (0.14)
2009	1,430	30.99 (1.83)	7.33 (0.99)
2010	785	30.45 (0.06)	7.38 (0.04)
2011	1,382	30.41 (2.02)	7.40 (1.15)
2012	961	30.83 (2.26)	7.37 (1.30)
2013	1,155	30.65 (0.06)	7.21 (0.03)
2014	886	30.60 (0.08)	7.20 (0.05)
Total	14,330		

Overwintering: OU researchers let 47 nests overwinter during the winter of 2014–2015. Six of these nests emerged in the fall after 1 October and no additional hatchlings were recovered thus they are not considered overwintering nests. Thirty-one nests, 24 of which emerged fully in the spring and the remaining 7 had hatchlings emerged in both fall and spring. Typically the majority of hatchling emerged in the fall, and one or two hatchlings were recovered in the spring from that nest (Table 4). Ten nests left to overwinter had egg shells that indicated emergence of the nest but no hatchlings were recovered. This is indicated by the texture of the egg shells and thus these nests were counted as successfully emerged. Frequently, wind-blown sand accumulates in the nest rings which allows the hatchlings to escape after emergence and thus we cannot determine exactly when emergence occurred but are confident that the nest emerged. During the spring of 2015 OU researchers did not excavate all nests in a single event;

instead, OU personnel were able to visit the island three times weekly starting the first week in April to document the natural emergence of overwintering nests. Normally, all overwintering nests are excavated on a single day in early April because of the constraints of the academic year. This method results in high catch returns of overwintering hatchlings; however, allowing hatchlings to emerge naturally from nests during the spring results in greater escape rates of hatchlings, as the rings are frequently filled with sand allowing hatchlings to climb over the rim or hatchlings emerge outside the ring. Although tracking of overwintering nests resulted in more unknown nests than previous years, researchers suggest that this is more a methodological phenomenon than an actual decrease in survival. Because of this, researchers were able to identify an emergence season that lasted from 6 April – 22 May 2015 during which time 248 hatchlings emerged.

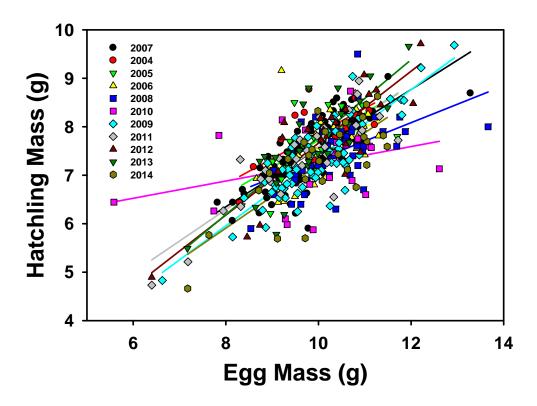


Figure 5. The relationship between average egg mass by clutch and average hatchling mass by clutch for ten years on Poplar Island. The relationship is similar for all years except 2010 when the slope of the relationship decreased substantially.

Researchers also PIT tagged terrapins that were part of the AE, the NAIB, and MES headstart programs. Researchers tagged and processed 220 terrapins in April 2015 (Appendix 3) and during May, June, and July 2015 these hatchlings were transported to Poplar Island and released. Twelve hatchlings died during the rearing phase of the project.

Table 4. Nest fate and overwintering percentages of the Cell 5 and Notch nests during the 2006 –2014 nesting seasons on Poplar Island. 2006 2007 2008 2009 2010 2011 2012 2013 2014 TOTAL NESTS -146 170 183 159 124 178 172 130 107 **NOTCH & OUTSIDE** OF CELL 5 **D**EPREDATED **NESTS AND NESTS** 47 15 18 17 12 15 46 11 **DESTROYED** (32.2%) (10.6 %) (9.3%)(7.5%)(3.2%)(8.4%)(26.7%) (11.5%) (10.2%) **BEFORE FALL EMERGENCE** 113 77 FALL EMERGING 49 92 68 134 62 66 62 (33.6%)(54.1% (61.7%)(42.8%)(62.1%) (75.3%)(36.0%)(50.8%)(57.9%)**NESTS NESTS OVER-**44 60 44 74 21 22 40 49 41 (16.9%) (30.1%) (24.0%)(46.5%)(12.4%)(37.7%) **WINTERING** (35.3%)(23.3%) (38.3%)33 50 40 66 21 22 40 45 41 SPRING EMERGING (21.9%) (22.6%) (29.4%) (41.5%) (16.9%) (12.4%) (23.3%) (34.6%) (26.9%) **NESTS OVERWINTERING** 6 4 4 8 0 4 0 **NESTS THAT DID** 13.6% (2.4%)(2.2%)(5.0%)(0.0%)(0.0%)(0.0%)(3.1%)(0.0%)**NOT EMERGE** 25 0 10 **UNKNOWN NESTS** (7.5%)(3.5%)(4.9%)(3.1%)(4.0%)(3.9%)(14.5%)(0.0%)(9.3%)**BOTH FALL &** 1 0 1 4 4 4 12 1 7 SPRING EMERGING

(2.5%)

(3.2%)

(2.2%)

(7.0%)

(0.8%)

(6.5%)

(0.7%)

NESTS

(0%)

(0.5%)

Highlights of the 2014 Field Season: The 2014 field season was rather normal for terrapin surveys; however, there were a few interesting observations and accomplishments worthy of note. First, the sand cross dikes between Cells 1A/B and Cells 1B/C were rototilled by MES personnel in early June with the objective of attracting nesting terrapins to these potential nesting sites. Although the rototilling successfully reduced vegetation in these areas, the newly created open sandy areas did not significantly increase the number of nests in these areas. Second, the expansion of trailing fuzzy bean in the Notch is having a negative effect on the quality of the nesting area (see Figure 2). Its proliferation and complete covering of this critical nesting area prior to the end of the nesting season indicates the need to explore methods to control this invasive species on the nesting habitat. Third, researchers were asked by MES to trap juvenile and adult terrapins in Cell 5 during dewatering operations (see cover photo). This resulted in the capture of more than 30 animals that were relocated to the outside of Cell 5 and the Notch. Interestingly, three of these terrapins were adult females that were headstarted in 2006, and had not been seen since their release eight years ago. Additionally, researchers were able to detect eggs via inguinal palpation in two of the females indicating that they were reproductively active. Fourth, researchers recaptured 63 headstart individuals and 77 hatchlings that were originally marked on Poplar Island as hatchlings emerging from nests. This is part of the mark-recapture research on Poplar Island conduct by Ohio University that documents headstart survival and monitors terrapin population size and

dynamics within the archipelago. These findings, along with those of previous years of naturally released hatchlings and headstarts remaining and reproducing on Poplar Island, suggest a growing and successful terrapin population in the Poplar Island archipelago.

CONCLUSIONS

Terrapin nesting was lower than average during 2014 and nest survival declined relative to 2013 in the major nesting areas (Figure 3). There was an increase in nests on other areas of the island, mostly on the cross dikes in Cell 4, Cell 1, and Cell 3. Nest survivorship remains high on Poplar Island relative to the Patuxent River mainland population (Roosenburg, 1991) mainly because the primary nest predators (raccoons and foxes) are absent from the island, and crow predation is reduced by the wire mesh laid over the nests. OU researchers are documenting an increase in Poplar Island's Eastern Kingsnake population and they are contributing to predation of nests on the island. The number of nests found annually also indicates that 70–125 adult females are using Poplar Island for nesting. This estimate is based on a maximum reproductive output of three clutches per year per female, as has been observed in the Patuxent River population (Roosenburg and Dunham, 1997).

The sand stockpile in Cell 4ABC and its erosion by wind has created high quality (open sandy) nesting habitat in the Notch since 2011. The deposit of sand formed a large sand dune in the Notch that continues to attract terrapins to nest. Furthermore, windblown erosion created open sandy areas in Cell 4D and the Notch that were previously overgrown with vegetation. Indeed, Figure 3 illustrates the high density nesting that occurred in these areas of newly formed nesting habitat that has contributed to a dramatic increase in nests in the northern section of the Notch during the last three years. The targeting of vegetation-free areas by nesting females indicates the need to maintain these types of habitat throughout the island to provide high quality nesting habitat on Poplar Island. This conclusion also was supported by the vegetation removal experiment conducted in 2012 (Roosenburg et al, 2014) that demonstrated that terrapins placed more nests in the open cleared areas than in the control areas. Researchers are concerned by the increasing vegetation, particularly the TFB outside Cell 5 and in the Notch, and the dramatic decrease in nesting observed outside Cell 5.

During 2014, researchers conducted daily (Monday-Friday) surveys of the nesting areas in the Notch, outside Cell 5, and outside Cell 3, in addition to daily surveys in Cell 4D, Cell 3D, and Cells 1A, 1B, and 1C. This was possible because one researcher was dedicated full-time to locating terrapin nests and three other OU researchers assisted throughout the nesting season. The researchers discovered 19 (15 in the fall and four in the spring) nests by noting hatchlings emerging after the nesting season had ended, and confirmed the nest with the presence of egg shells. Many of these nests were probably laid during the weekends of the nesting season when researchers could not complete nesting surveys.

Raccoons, foxes, and otters are known terrapin nest predators and contribute to low nest survivorship in areas where these predators occur, sometimes depredating 95% of the nests (Roosenburg, 1994). The lack of raccoons and foxes on Poplar Island minimizes the risk to nesting females (Seigel, 1980; Roosenburg, pers. obs.). The absence of efficient nest and adult predators on Poplar Island generated nest and adult survivorship rates that remain higher compared to similar nesting areas with efficient predators. As was similarly observed in 2002 through 2014 (Roosenburg and Allman, 2003; Roosenburg and Sullivan, 2006; Roosenburg and Trimbath, 2010; Roosenburg et al., 2004; 2005; 2007; 2008; 2014), the nest survivorship and hatchling recruitment on Poplar Island continues to be higher relative to mainland populations.

Poplar Island produced 886 hatchlings during the 2014 nesting season. Hatchlings started emerging from the nests on 31 July 2014; the overwintering hatchlings were allowed to emerge naturally instead of excavating all the nests on a single day. Spring emergence began on 6 April and continued until 22 May 2015. Researchers released all of the hatchlings in Cell 4D, Cell 3D, and Cells 1A and 1C; however, many of the hatchlings released in September and October 2014 clearly preferred to stay on land as opposed to remaining in the water. This trend in terrestrial habitat selection is supported by other studies on terrapin hatchlings and juveniles (Roosenburg et al. 1999; Draud et al. 2004). Terrapin hatchlings hibernate underground as opposed to underwater like adult terrapins (Draud et al. 2004); hibernating in water may be physiologically more costly than hibernating on land.

During the winter of 2014–2015, 41 nests overwintered successfully. The recovery of 248 hatchlings from overwintering nests confirms overwintering as a successful strategy used by some terrapin hatchlings. Forty-seven nests had not emerged at all or had only partially emerged by 1 November 2014 and thus were left to overwinter. However, excavation of two of these nests in the following spring discovered a large number of dead eggs, indicating that this nest never developed successfully during the summer incubation period. Excavation of one nest revealed that eggs had been depredated by roots. Other nests contained empty egg shells from which hatchlings had emerged but had escaped the ring. In these cases it was impossible to confirm whether these nests emerged in the fall or the spring. Continued studies of overwintering and spring emergence will be conducted to better understand the effect of overwintering on the terrapin's fitness, life cycle, and natural history. Poplar Island offers a wonderful opportunity to study overwintering terrapins because of the large number of nests that survive predation.

The educational program conducted in collaboration with the AE Outdoor Education Center, the NAIB, and MES successfully headstarted 220 terrapins. Students increased the size of the hatchlings they raised to sizes characteristic of two to five year old terrapins in the wild. All hatchlings were PIT tagged to determine the fate of these hatchlings in the future through the continued mark-recapture study. During the summers of 2008–2014, mark-recapture efforts in the Poplar Island Harbor and the area between Poplar and Coaches Islands have relocated several headstart and natural release hatchlings. The preliminary results indicate that some terrapins from the island are

remaining within the archipelago and surviving. In 2012, the first gravid adult female originally marked as a hatchling on Poplar Island in 2004 was recaptured. In 2013, the return of four more gravid adults originating on Poplar Island was recorded. Two individuals were marked as hatchlings and released, while the other two individuals were part of the headstarting program. During 2014 we saw further increases in the number of second generation Poplar Island terrapins both from natural recruitment and those accelerated through the headstart program.

The initial success of terrapin nesting on Poplar Island indicates that similar projects also may create suitable terrapin nesting habitat. Although measures are taken on Poplar Island to protect nests, similar habitat creation projects should have high nest success until raccoons or foxes colonize the project. Throughout their range, terrapin populations are threatened by loss of nesting habitat to development and shoreline stabilization (Roosenburg, 1991; Seigel and Gibbons, 1995). Projects such as the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island combine the beneficial use of dredged material with ecological restoration, and can create habitat similar to what has been lost to erosion and human practices. With proper management, areas like Poplar Island may become areas of concentration for species such as terrapins, thus becoming source populations for the recovery of terrapins throughout the Chesapeake Bay.

The Poplar Island FMD identifies three purposes for the terrapin monitoring program. The first purpose is to monitor terrapin nesting activity and habitat use to quantify terrapin activity on Poplar Island. The current monitoring program is detailing widespread use of the island by terrapins, evidenced by a comparable number of nests found relative to mainland sites in the Patuxent River as well as the recovery of several marked individuals in the mark-recapture study. The second purpose is to determine the suitability of the habitat for terrapin nesting. The high nest success and hatching rates on Poplar Island indicate that the island provides high quality terrapin nesting habitat, albeit limited in availability because of the rock perimeter dike around most of the island. The third purpose is to determine if the project is affecting terrapin population dynamics. During 2014, OU researchers continued the intensive trapping in developed wetland cells started in 2012 (funded by MD-DNR) and recaptured large numbers of both headstart and wild hatchlings that originated from Poplar Island. Furthermore, the discovery of nests and nesting females on the dikes around developed wetland cells indicates that terrapins are using this newly created habitat, albeit this nesting habitat is not used as densely as those sites on the exterior portions of the perimeter dike.

The Poplar Island FMD also identifies three hypotheses for the terrapin monitoring program. Hypothesis one is that there will be no change in the number of terrapin nests or the habitat used from year to year. During 2014, researchers discovered 165 nests which is a decline from the mean of 200 nests per year (2004-2013). Researchers suspect that the decline is due to a decrease in detectability of nests because of increasing vegetation on Poplar Island. Hypothesis two states that nest survivorship, hatchling survivorship, and sex ratio will not differ between Poplar Island and reference sites. This hypothesis is rejected as nest success and hatchling survivorship is much higher on Poplar Island because of the lack of major nest predators, and the sex ratio of

hatchlings on Poplar Island is highly female biased (9:1) relative to the Patuxent River population where the sex ratio is 2:1 female biased (Roosenburg et al, 1997). Hypothesis three states that there will be no change in terrapin population size on Poplar Island; particularly within cells from the time the cells are filled, throughout wetland development, and after completion and breach of the retaining dike. The status of this hypothesis remains undetermined as there is not enough data currently to form a conclusion.

RECOMMENDATIONS

Terrapin nesting is spreading on Poplar Island as completion of wetland cells creates both access and availability of nesting habitat. The discovery of nests on the dikes of Cells 3D, 4D, 1A, 1B, and 1C indicates that female terrapins are entering wetlands and using them as access routes to nesting areas. Researchers have frequently noted terrapins inside the wetland Cells 4D and 3D. Although the dikes around the new wetland cells, in particular Cells 3D, 1A, 1B, and 1C are sufficiently elevated for terrapin nesting, nesting activity potentially could increase if elevated (+1 m above mean high tide) so that terrapins could visually locate open sandy areas

Figure 6. One of the cross dikes in Cell 1 after being rototilled to reduce vegetation and enhance the area to be attractive for nesting terrapins.

from the adjacent water. The tilling of the dikes between Cells 1A/B and 1B/C created potential nesting areas strategically near inlets and open water within the cells (Figure 6). Unfortunately these sites were not heavily used by nesting terrapins as was hoped. The highest density nesting areas remain outside Cell 3, Cell 5, and the Notch suggesting that areas on the exterior of the island are more attractive nesting sites. Researchers suggest

the continued tilling of the cross dikes in Cell 1 for subsequent nesting seasons to determine if nesting will increase in the cell interiors as more females encounter these open sandy areas. Elevating the areas near the canal that bisect the dike may increase visibility from the water, which is suspected to be the feature that attracts terrapins to nesting areas.

Because the nesting area outside Cell 3AC is small and the vegetation continues to increase in the Notch and outside Cell 5, the amount of high quality nesting habitat on the outside of the perimeter dike is decreasing. The continued decrease in nesting activity outside Cell 5 may be a direct consequence of the increasing density and stature of the vegetation, particularly Switch Grass and Salt Marsh Hay, in the recent years. The dense proliferation of trailing fuzzy bean during the summer of 2014 in the remaining open areas, particularly in the Notch, suggest that proactive control of this invasive species can maintain open sandy areas that continue to attract nesting females throughout the season. Researchers plan to implement manual and mechanical control of TFB in the Notch and outside Cell 5 in 2015. Perhaps with targeted control of this annual, the seed bank can be reduced to minimize continued proliferation of TFB in this critical nesting area. Because TFB is an annual and thus dies back in the winter, the areas are open in the spring but by summer the vegetation blankets the nesting areas. The continued accumulation of sand in the Notch via wind erosion from the stock piles in Cell 4ABC helps maintain these open nesting areas. Researchers strongly believe that maintaining these open areas in the Notch will increase the number of nests in this area, consistent with the trend observed since 2011 when nesting activity began to shift from outside Cell 5 to the Notch.

The northeast expansion of Poplar Island provides an additional opportunity to create more terrapin nesting habitat along the exterior dike in the sheltered areas of Poplar Harbor between Poplar Island and Jefferson Island. In particular, areas built to the northeast of Jefferson Island would be ideal for creating terrapin nesting habitat. The creation of these nesting areas could offset the loss of nesting habitat that has occurred on the outside of Cell 3AC in recent years. Although this area is proposed to be an upland cell, the creation of offshore bulkheads and backfilling of sand as illustrated in Figure 7 could provide a large amount of terrapin nesting habitat. Building structures such as those illustrated in Figure 7 on the outside of the barrier dike would preclude the need to build additional fencing to prevent turtles from getting into the cells under construction. Furthermore, nesting areas without marsh and beach grasses could be provided for terrapin nesting habitat within the cells under construction. Terrapins avoid nesting in areas with dense vegetation (Roosenburg 1996), so providing open, sandy areas on the seaward side of the dikes should reduce efforts by terrapins to enter cells under construction to find suitable, open areas for nesting.

Predator control on the island will be paramount to the continued success of terrapin recruitment. Minimizing raccoon and fox populations will maintain the high nest survivorship observed in 2002 through 2014. Crow predation is minimized on the island by the placement of screens over the nests. We suggest that this protective measure continues as long as nests are marked with survey flags that are recognized by crows to reveal nests. A sustained program to eliminate mammalian predators and prevent avian

predation will facilitate continued terrapin nesting success on Poplar Island.

Researchers also recommend the continuation of terrapin nesting monitoring on Poplar Island. The area of newly deposited sand with little vegetation creates a natural experiment that will allow for the evaluation of how the creation of other new nesting areas may benefit nesting activity on the island. Furthermore, experimental removal of vegetation in some

Figure 7. Shoreline stabilization and the creation of terrapin nesting habitat in Calvert County, Maryland – Red dots indicate terrapin nests.

nesting areas could continue to be tested as a mechanism to increase nesting densities in areas of Cell 5 and the Notch, where nesting density has declined in recent years, but also as a potential management tool to direct nesting to new areas. Additionally, continued monitoring will document the further expansion and use of terrapin habitat on the island. OU researchers plan to continue to include additional cells into the nesting surveys as the cells are developed.

Finally, researchers recommend the continuation of the headstart education program. The terrapin is an excellent ambassador for the island because of its charismatic nature, but also because the project has successfully created habitat for this species. Thus the terrapin education program is an extremely effective mechanism to teach about Poplar Island and its environmental restoration. The message that terrapins provide is not only absorbed by K–12 students, but by all visitors to the island, and therefore is an invaluable tool to promote the restoration effort at Poplar Island. These recommendations offered by OU will contribute to the continuing and increasing understanding of the effect of Poplar Island's restoration on terrapin populations and their use as ambassadors for Poplar Island.

ACKNOWLEDGMENTS

We are grateful to Mark Mendelsohn, Robin Armetta, Justin Callahan, and Doug Deeter of the USACE for their support and excitement about discovering terrapins on Poplar Island. Michelle Osborn, Claire Ewing, and Alexa Poynter of MES assisted with fieldwork in this project. Without their contribution this work could not have been successful. We also are indebted to the MES staff of Poplar Island who checked ringed nests during weekends and holidays. We thank Dave Bibo and the staff of the MPA for their continued support of the Poplar Island terrapin project. Marty Ernsberger, Tiffany Stelzer, and Madeline Ingle participated in fieldwork. This work was supported through an Army Corps of Engineers Contract to WMR and three Program to Aid Career Exploration (PACE) awards to WMR from OU. All animal handling protocols were approved by the IACUC at OU (IACUC #13-L-023) issued to WMR. All collection of terrapins was covered under a Scientific Collecting Permit number SCO-53958 issued to WMR through the MD-DNR Natural Wildlife and Heritage Service.

LITERATURE CITED

- Draud, M., M. Bossert, and S. Zimnavoda. 2004. Predation on Hatchling and Juvenile Diamondback Terrapins (*Malaclemys terrapin*) by the Norway Rat (*Rattus norvegicus*). Journal of Herpetology 38:467-470.
- Maryland Environmental Service. 2014. Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island Monitoring Framework.
- Roosenburg, W. M. 1991. The diamondback terrapin: Habitat requirements, population dynamics, and opportunities for conservation. In: A. Chaney and J.A. Mihursky eds. *New Perspectives in the Chesapeake System: A Research and Management and Partnership. Proceedings of a Conference.* Chesapeake Research Consortium Pub. No 137. Solomons, Md. pp. 237 234.
- Roosenburg, W. M. 1994 Nesting habitat requirements of the diamondback terrapin: a geographic comparison. Wetland Journal 6(2):8-11.
- Roosenburg, W. M. 1996. Maternal condition and nest site choice: an alternative for the maintenance of environmental sex determination. Am. Zool. 36:157-168.
- Roosenburg, W. M. and P. E. Allman. 2003. Terrapin Monitoring at Poplar Island. Final Report submitted to the Army Corps of Engineers, Baltimore District. Baltimore, MD. pp. 13.
- Roosenburg, W. M., W. Cresko, M. Modesitte, and M. B. Robbins. 1997. Diamondback terrapin (*Malaclemys terrapin*) mortality in crab pots. Conservation Biology 5:1166-1172.

- Roosenburg, W. M., R. Dunn, and N. L Smeenk. 2010. Terrapin Monitoring at Poplar Island, 2009. Final Report Submitted to the Army Corps of Engineers, Baltimore Office, Baltimore, MD pp. 23.
- Roosenburg, W. M. and A. E. Dunham. 1997. Allocation of reproductive output: Egg and clutch-size variation in the diamondback terrapin. Copeia 1997:290-297.
- Roosenburg, W. M., K. L. Haley, and S. McGuire. 1999. Habitat Selection and Movements of Diamondback Terrapins, *Malaclemys terrapin*, in a Maryland Estuary. Chelonian Conservation and Biology 3: 425-429.
- Roosenburg, W. M., M. Heckman, and L.G. Graham. 2008. Terrapin Monitoring at Poplar Island 2007. Final Report submitted to the Army Corps of Engineers, Baltimore District. Baltimore, MD. pp.45.
- Roosenburg, W. M., E. Matthews, and L.G. Graham. 2007. Terrapin Monitoring at Poplar Island 2006. Final Report submitted to the Army Corps of Engineers, Baltimore District. Baltimore, MD. pp.45.
- Roosenburg, W. M., T. A. Radzio and P. E. Allman. 2004. Terrapin Monitoring at Poplar Island 2003. Final Report submitted to the Army Corps of Engineers, Baltimore District. Baltimore, MD. pp. 41.
- Roosenburg, W. M., T. A. Radzio and D. Spontak. 2005. Terrapin Monitoring at Poplar Island 2004. Final Report submitted to the Army Corps of Engineers, Baltimore District. Baltimore, MD. pp. 26.
- Roosenburg, W. M., L. Smith and P. E. Converse. 2012. Terrapin Monitoring at Poplar Island 2011. Final Report submitted to the Army Corps of Engineers, Baltimore District. Baltimore, MD. pp. 50.
- Roosenburg, W. M., D. M. Spontak, S. P. Sullivan, E. L. Mathews, M. L. Heckman, R. J. Trimbath, R P. Dunn, E. A. Dustman, L. Smith, and L.J. Graham. 2014. Nesting Habitat Creation Enhances Recruitment in a Predator Free Environment: *Malaclemys* Nesting at the Paul S. Sarbanes Ecosystem Restoration Project. Restoration Ecology 22:815-823.
- Roosenburg, W. M. and S. Sullivan. 2006. Terrapin Monitoring at Poplar Island 2005. Final Report submitted to the Army Corps of Engineers, Baltimore District. Baltimore, MD. pp. 54.
- Roosenburg, W. M. and R. Trimbath. 2010. Terrapin Monitoring at Poplar Island 2008. Final Report submitted to the Army Corps of Engineers, Baltimore District. Baltimore, MD. pp. 54.

- Seigel, R. A. 1980. Predation by raccoons on diamondback terrapins, *Malaclemys terrapin tequesta*. J. Herp. 14:87-89.
- Seigel, R. A. and Gibbons, J. W. 1995. Workshop on the ecology, status, and management of the diamondback terrapin (*Malaclemys terrapin*), Savannah River Ecology Laboratory, 2 August 1994: final results and recommendations. Chelonian Conservation and Biology 1:240-243.
- Stegmann, E. W., R. B. Primack, and G. S. Ellmore. 1988. Absorption of nutrient exudates from terrapin eggs by roots of *Ammophila breviligulata* (Gramineae). Canadian Journal of Botany. 66:714-718.

Nest	Date	Latitude	Longitude	Cell #	Predation		Total	Average	Number of	Comments
#	Found					Size	Mass (g)	Mass (g)	Hatchlings	
1	28-May-14	38.75147	76.37458	Notch	no	13	146.6	11.28	10	Emerged 22-Aug. Excavated 4-Sep; 1 dead egg found. Total collected =10
2	2-Jun-14	38.74988	76.35795	5	no	19	158.9	8.36		Combined ring with nest 28. Emerged 4-Aug. Excavated 14-Aug; 2 dead eggs, 1 broken egg (exploded yolk), temp logger. Total collected from combined=16
3	2-Jun-14	38.75148	76.37459	Notch	no	15	145.7	9.71	11	Emerged 20-Aug. Excavated 15-Sep; 1 hatchling, 2 dead eggs. Total collected=11
4	2-Jun-14	38.75154	76.37461	Notch	no	17	169.3	11.29	9	2 dead eggs on top of nest. Emerged 2-Sep. Excavated 15-Sep; shells and temp log. Total collected=9
5	2-Jun-14	38.76075	76.38002	3	no	12	136.7	11.39	6	Emerged 5-Aug. 13-Aug high tide; no eggs found, fate of nest unknown. Total collected =6
6	3-Jun-14	38.76076	76.38000	3	no	17	167.5	9.85	6	Emerged 11-Aug. 13-Aug high tide; no eggs found, no temp log, fate of nest unknown. Total collected =6
7	3-Jun-14	38.76091	76.38007	3	no	13	135.4	10.42	5	Emerged 8-Aug. Excavated 18-Aug; shells and temp log found. Total collected=5
8	3-Jun-14	38.76063	76.37993	3	no	7	69.7	9.96		Micro egg. Nest washed out 23-June
9	3-Jun-14	38.75268	76.37442	Notch	no	15	152.2	10.15	14	Emerged 2-Sep. Excavated 15-Sep; 2 hatchlings and temp log found. Total collected=14
10	3-Jun-14	38.75183	76.37466	Notch	no	11	121.5	11.05	10	Emerged 26-Sep. Excavated 6-Oct; egg shells and temp log found. Total collected=10
11	3-Jun-14	38.75116	76.37103	5	no	14	127.6	9.11	4	Overwintering nest; Emerged 6-Apr; Excavated 26-May, 6 dead eggs;
12	3-Jun-14	38.75001	76.36823	5	no	11	116.9	10.63	11	Overwintering nest; Emerged 15-Apr; Excavated 6-May
13	4-Jun-14	38.76091	76.38006	3	no	11	119.8	10.89	4	emerged 31-Jul. Excavated 13-Aug; >4 eggs- worth of shells found; hatchlings likely escaped. Temp log collected. Total collected=4
14	4-Jun-14	38.74975	76.36766	5	no	10	90.6	11.33	1	2 broken eggs. Emerged 9-Sep. Excavated 19-Sep; 7 dead dead eggs and temp log. Eggs killed by roots. Total collected=1

Nest	Date	Latitude	Longitude	Cell #	Predation	Clutch	Total	Average	Number of	Comments
#	Found					Size	Mass (g)	Mass (g)	Hatchlings	
15	4-Jun-14	38.75281	76.37433	Notch	no	20	152.7	7.64	15	emerged 6-Oct. Overwintering nest; Excavated 21 May, 1 dead egg
16	4-Jun-14	38.77623	76.37437	1 CD	no					Old nest, did not dig up. Overwintering nest. Excavated 26-May, 8 dead eggs
17	5-Jun-14	38.76077	76.38002	3	no	15	131.7	8.78	7	Emerged 11-Aug. Excavated 22-Sept; 5 dead eggs and temp log. Total collected=7
18	5-Jun-14	38.76103	76.38012	3	no	15	139.8	9.32	6	Emerged 31-Jul. Excavated 15-Aug; only egg shells found. Total collected=6
19	5-Jun-14	38.77151	76.38097	1 AB	yes; full					Depredated nest
20	5-Jun-14	38.77563	76.37295	1 CD	no	3	22.4	7.47	1	Emerged 23-Oct. Excavated 24-Oct; 2 dead eggs and temp log. Total collected=1
21	5-Jun-14	38.75257	76.37445	Notch	no	17	163.4	9.61		Excavated 21-May; 17 dead eggs Nest never developed
22	5-Jun-14	38.75212	75.37465	Notch	no	14	114.6	8.19		Overwintering nest; Excavated 22-May 9 dead eggs, 5 egg shells found
23	5-Jun-14	38.75139	76.37284	Notch	yes; full					Full depredation by kingsnake
24	5-Jun-14	38.75108	76.37079	5	no	16	116.5	7.28	5	Emerged 11-Aug. Excavated 22-Aug; 2 dead eggs and 1 live hatchling, temp log. Total collected=5
25	5-Jun-14	38.75086	76.37037	5	no	12	110.5	9.21		Overwintering nest; Excavated 26 May, 1 dead hatchling, 1 dead egg, 6+ egg shells
26	5-Jun-14	38.74993	76.36838	5	no	14	131.4	9.39		Overwintering nest; Excavated 26 May 12 dead eggs, 2 egg shells
27	5-Jun-14	38.74987	76.36802	5	no				12	old nest, did not dig up. Overwintering nest; Excavated 26-May 4 dead eggs 8+ egg shells
28	5-Jun-14	38.75148	76.37459	5	no	14	127.8	9.13		Combined ring with nest 2. Emerged 4-Aug. 13-Aug: emergent hole found outide of ring (temp log 28 found), one dead egg and egg shells found. Total collected for 2/28=16
29	6-Jun-14	38.75578	76.37853	4D	no	16	132.2	8.26	2	Emerged 10-Sep. Excavated 19-Sep: one hatchling, 7 dead eggs, and temp log found. Eggs killed by roots. Total collected=2
30	6-Jun-14	38.75166	76.37465	Notch	yes; full					Depredated nest
31	9-Jun-14	38.75247	76.37459	Notch	yes; full					Depredated nest; Black Rat Snake

Nest	Date	Latitude	Longitude	Cell #	Predation		Total	Average	Number of	Comments
#	Found					Size	Mass (g)	Mass (g)	Hatchlings	
32	9-Jun-14	38.75144	76.37175	5	yes; partial	1	7	7.00		Depredated nest, one egg remains. Excavated 24-Oct; egg shell found. Total collected =0
33	9-Jun-14	38. 74989	76.36797	5	no	14	142.2	10.16	5	Emerged 26-Sep. Overwintering nest. 1 hatchling 22-Apr, excavated 26-May 1 dead egg
34	9-Jun-14	38.75114	76.37356	Notch	no	17	122	7.18	16	Overwintering nest; Emerged 15-Apr; Excavated 26-May 8+ egg shells
35	10-Jun-14	38.76108	76. 38012	3	no	21	217.6	10.36		13-Aug high tide: no eggs found, fate of nest unknown. Total collected=0
36	11-Jun-14	38.75344	76.37382	Notch	yes; partial	1	7.9	7.90		Kingsnake found eating nest; 1 egg alive and 1 egg broken. Excavated 24-Oct: 1 dead egg found. Total collected=0
37	11-Jun-14	38.75142	76.37177	5	no	16	156.4	9.78		13-Aug: emergent hole found outside of ring (temp log collected), 5 dead eggs and shells found. Total collected=0
38	11-Jun-14	38.74986	76.36801	5	no	11	96.3	8.75	2	Emerged 2-Sep. Excavated 15-Sep; 4 dead eggs, temp log, and few shells found. Total collected=2.
39	12-Jun-14	38.76089	76.38011	3	no				7	Old nest, did not dig up. Emerged 11-Aug. Excavated 21-Aug; 2 dead eggs found. Total collected=7
40	13-Jun-14	38.75276	76.37433	Notch	no	12	116.6	9.72	12	Overwintering nest; Emerged 15-Apr; Excvated 6 May egg shells
41	13-Jun-14	38.75274	76.37440	Notch	no	14	129.4	9.24	6	found terrapin (PI 1951) laying nest. 1 egg laid in turtle bag; included in clutch and added to nest. Emerged 2-Sep. Excavated 12-Sep; 2 dead eggs. Total collected=6
42	13-Jun-14	38.75170	76.37470	Notch	no	14	123.4	8.81	5	Emerged 15-Aug. Excavated 3-Sep; 3 hatchlings, 5 dead eggs, and temp log found. Total collected=5
43	16-Jun-14	38.75134	76.37287	Notch	no				1	Old nest, did not dig up. Overwintering nest Emered 4-May: Excavated 26 May 14 dead eggs - root predation

Nest	Date	Latitude	Longitude	Cell #	Predation	Clutch	Total	Average	Number of	Comments
#	Found					Size	Mass (g)	Mass (g)	Hatchlings	
44	16-Jun-14	38.75262	76.37445	Notch	no				13	Old nest, did not dig up. Emerged 2-Sep. Excavated 15-Sep; 1 hatchling found. Total collected=13
45	17-Jun-14	38.77130	76.38061	1 AB	no	14	151.4	10.81	13	Overwintering nest; Emerged 15-April; 1 dead egg
46	17-Jun-14	38.75500	76.38031	4D	no					Old nest, did not dig up. Excavated 26-May 5 dead eggs. Nest failed
47	17-Jun-14	38.75278	76.37431	Notch	no	13	136.3	10.48	7	Emerged 27-Aug. Excavated 12-Sep; 4 dead eggs and temp log found. Total collected=7
48	17-Jun-14	38.75115	76.37347	Notch	no	16	87.3	5.82	7	1 cracked egg (included in clutch size). Emerged 3-Sep. Excavated 15-Sep; 1 hatchling, 4 dead eggs, and temp log found. Total collected=7
49	17-Jun-14	38.75112	76.37100	5	yes; partial	2	22.4	11.20		Open/depredated nest, 2 eggs remain. Excavated 27-Oct; 2 dead eggs and temp logger. Total collected=0
50	17-Jun-14			5	no	17	160.2	10.01	3	1 crushed egg (included in clutch size). Emerged 27-Aug. Excavated 11-Sep; 8 dead eggs, 1 hatchling, temp log found. Total collected=3
51	18-Jun-14	38.76099	76.38009	3	no	17	170.2	10.01	13	Emerged 11-Aug. 13-Aug high tide; no eggs found, fate of nest unknown. Total collected=13
52	18-Jun-14	38.76099	76.38010	3	no	14	153.4	10.96	10	Emerged 11-Aug. Excavated 21-Aug; 3 dead eggs and temp log. Total collected=10
53	18-Jun-14	38.76089	76.38007	3	no	11	104.3	9.48	6	Emerged 19-Aug. Excavated 29-Aug; 2 hatchlings and temp log. Total collected=6
54	18-Jun-14	38.76197	76.38023	3	no	12	124.9	135.80		13-Aug high tide; no eggs found, fate of nest unknown. Total collected=0
55	18-Jun-14	38.75285	76.37430	Notch	no	16	163.8	10.24	24	Overwintering nest; Clearly 2 nests caught in ring; Excavated 21-May egg shells
56	18-Jun-14	38.74999	76.36826	5	no	15	137.4	9.81	8	Emerged 27-Aug. Excavated 15-Sep; 3 hatchlings, 2 dead eggs, and temp log found. Total collected=8

Nest #	Date Found	Latitude	Longitude	Cell #	Predation	Clutch Size	Total Mass (g)	Average Mass (g)	Number of Hatchlings	Comments
57	19-Jun-14	38.76100	76.38012	3	no	13	128.2	9.86	10	Emerged 11-Aug. Excavated 21-Aug; only egg shells and temp log found. Total collected=10
58	19-Jun-14	38.76107	76.38015	3	no					13-Aug high tide: no eggs found, fate of nest unknown. Total collected=0
59	19-Jun-14	38.76116	76.38017	З	no	15	148	9.87		Moved nest up from waterline (WP is new location). 13-Aug high tide: no eggs found, on shell on surface, fate of nest unknown. Total collected=0
60	19-Jun-14	38.74980	76.36783	5	no	12	117.5	9.79	10	Emerged 22-Aug. Excavated 28-Aug; 1 hatchling found. Total collected=10
61	19-Jun-14	38.75100	76.37071	5	no	13	95.6	7.35	5	Emerged 11-Aug. Excavated 21-Aug; nothing found. Total collected=5
62	19-Jun-14	38.75146	76.37458	Notch	no	16	114.7	7.17	3	Emerged 28-Aug. Excavated 8-Sep; 4 dead eggs and temp log. Total collected=3
63	19-Jun-14	38.76680	76.38139	3D 1A	no	13	97	7.46	5	Emerged 2-Sep. Excavated 15-Sep; 4 dead eggs, very few shells, and temp log. Total collected=5
64	19-Jun-14	38.75244	76.37461	Notch	no	15	161.01	11.50	10	1 broken egg. Emerged 1-Oct. Overwintering nest; Excavated 21-May - 4 dead eggs
65	20-Jun-14	38.75351	76.37378	4	no	11	126.9	11.54		Overwintering nest; Excavated 21-May - Nothing found
66	20-Jun-14	38.75286	76.37432	Notch	no	12	119.21	9.93	6	Emerged 2-Sep. Excavated 12-Sep; 1 hatchlings, 3 dead eggs, and temp log. Total collected=6
67	20-Jun-14	38.75176	76.37467	Notch	no				14	Old nest, did not dig up. Overwintering nest; Excavated 26-May 4 dead eggs 8+ egg shells
68	20-Jun-14	38.75161	76.37466	Notch	no	19	177.5	9.34	15	Emerged 8-Sep. Excavated 18-Sep; 3 hatchlings, 1 dead egg, and temp log. Total collected=15
69	20-Jun-14	38.74953	76.36704	5	no				12	Old nest, did not dig up. Emerged 2-Oct. Overwintering nest. 1 Hatchling 6-May
70	23-Jun-14	38.76087	76.38012	3	no				6	Old nest, did not dig up. Emerged 8-Aug. Excavated 21-Aug; only egg shells found. Total collected=6

Nest	Date	Latitude	Longitude	Cell #	Predation	Clutch	Total	Average	Number of	Comments
#	Found					Size	Mass (g)	Mass (g)	Hatchlings	
71	23-Jun-14	38.76096	76.38012	3	no				6	Old nest, did not dig up. Emerged 25-Aug. Excavated 9-Sep; 2 hatchlings and 1 dead egg. Total collected=6
72	23-Jun-14	38.76096	76.38008	3	no	17	159.8	9.99	16	Last egg not measured? Emerged 22-Aug. Excavated 4-Sep; 3 hatchlings and temp log. Total collected=16
73	23-Jun-14	38.75253	76.37458	Notch	no	17	168.1	9.89	17	Emerged 28-Aug. Excavated 8-Sep; only shells and temp log found. Total collected=17
74	23-Jun-14	38.75215	78.37469	Notch	no	15	119.5	7.97	7	Emerged 2-Sep. Excavated 12-Sep; 1 dead egg and temp log. Total collected=7
75	23-Jun-14	38.75006	76.36847	5	no				2	Old nest, did not excavate. Overwintering nest; Emerged 6 May: Excavated 26 May, 7 dead eggs, 2 egg shells
76	25-Jun-14	38.76112	76.38015	3	no					Old nest, did not excavate. 13-Aug high tide; no eggs found, fate of nest unknown. Total collected=0
77	25-Jun-14	38.76072	76.37996	3	no	13	121.8	9.37		Combined ring with nest 97. 13-Aug high tide; no eggs found, fate of nest unknown. Total collected=0
78	25-Jun-14	38.75284	76.37424	Notch	no	18	156.8	8.71	15	Many of the eggs were very soft-shelled. Emerged 3-Sep. Excavated 18-Sep; only temp log found. Total collected=15
79	26-Jun-14	38.74970	76.86740	5	no	8	65.6	8.20		Overwintering nest; Excavated 26-May nothing found
80	26-Jun-14	38.75158	76.37467	Notch	no	16	160.6	10.04	18	Overwintering nest; Emerged 17-Apr; Excavated 11 may - egg shells
81	27-Jun-14	38.76109	76.38013	3	no	14	115.9	8.28		13-Aug high tide; no eggs found, fate of nest unknown. Total collected=0
82	27-Jun-14	38.75217	76.37468	Notch	no	14	148.2	10.59	10	Emerged 26-Aug. Excavated 8-Sep; one dead egg and temp log. Total collected=10
83	27-Jun-14	38.75185	76.37465	Notch	no				5	Old nest, did not dig up. Emerged 26-Sep. Overwintering nest. Excavated 18 May, 1 hatchling

Nest	Date	Latitude	Longitude	Cell #	Predation	Clutch	Total	Average	Number of	Comments
#	Found					Size	Mass (g)	Mass (g)	Hatchlings	
84	27-Jun-14	38.75173	76.37468	Notch	no	14	152.4	10.89	9	Emerged 8-Sep. Excavated 18-Sep; 2 dead eggs and temp log. Total collected=9
85	27-Jun-14	38.75168	76.37465	Notch	no				4	Old nest, did not dig up, Overwintering; Excavated 22 May; 3 dead eggs, egg shells
86	27-Jun-14	38.74964	76.36743	5	yes; full					Depredated nest
87	30-Jun-14	38.75266	76.37441	Notch	no	17	177.3	10.43	2	Emerged 27-Aug. Excavated 15-Sep; 1 dead egg and temp log collected, very few egg shells found. Total collected=2
88	30-Jun-14	38.77320	76.37646	1BC	no				10	Old nest, did not dig up. Emerged 2-Sep. Excavated 18-Sep; only few egg shells found. Total collected=10
89	1-Jul-14	38.76092	76.38005	3	no	7	58	9.67		1 egg broken; included in clutch size. 13-Aug high tide; no eggs found, fate of nest unknown. Total collected=0
90	1-Jul-14	38.76108	76.38013	3	no	16	153.3	9.58	9	13-Aug high tide; eggs still in nest. Emerged 28-Aug. Excavated 8-Sep; 7 hatchlings, 2 dead eggs, and temp log. Total collected=9
91	2-Jul-14	38.76103	76.38009	3	no	12	147.1	12.26		13-Aug high tide; no eggs found, fate of nest unknown. Total collected=0
92	2-Jul-14	38.76095	76.38009	3	no	12	130.9	10.91	2	Emerged 12-Sep. Excavated 24-Sep; 2 dead eggs and temp log. Total collected=2
93	2-Jul-14	38.76083	76.38004	3	no				8	Old nest, did not dig up. Emerged 14-Aug. Excavated 22-Aug; only egg shells found. Total collected=8
94	2-Jul-14	38.74947	76.36688	5	no	10	114	11.40	9	Female seen on nest, went into water before capture was possible. Emerged 8-Sep. Excavated 18-Sep; 1 hatchling, 1 dead egg, temp log. Total collected=9
95	2-Jul-14	38.75290	76.75290	Notch	no	11	110.9	10.08	10	Overwintering nest; Emerged 15-Apr; excavted 15 May 1 dead egg 5+ egg shells
96	2-Jul-14	38.77002	76.37882	1AB	no	11	123.1	11.19	12	Overwintering nest; Emerged 22-Apr, Excavated 6-May egg shells
97	3-Jul-14	38.76070	76.37996	3	no	11	131.4	11.95		13-Aug high tide; no eggs found, fate of nest unknown. Total collected=0

Nest	Date	Latitude	Longitude	Cell #	Predation		Total	Average	Number of	Comments
#	Found					Size	Mass (g)	Mass (g)	Hatchlings	
98	3-Jul-14	38.76076	76.37999	3	no	12	123.1	10.26	6	13-Aug high tide; nest survived. Emerged 11-Sep. Excavated 24-Sep; 2 hatchlings, 2 dead eggs, temp log. Total collected=6
99	3-Jul-14	38.76083	76.37999	3	no	13	135.7	10.44	3	13-Aug high tide, no eggs found. UPDATE: emergent nest found 3-Sep; 3 hatchlings and temp log collected. Total collected=3
100	3-Jul-14	38.74945	76.36689	5	no	15	138.4	9.23		Above nest 101. Overwintering nest. Emerged 6 May; Excavted 26-May
101	3-Jul-14	38.74945	76.36689	5	no					Below nest 100. Old nest, did not excavate. One punctured egg. Overwintering
102	3-Jul-14	38.74981	76.36780	5	no	17	152	8.94	16	Emerged 2-Sep. Excavated 15-Sep; 1 hatchling and temp log. Total collected=16
103	3-Jul-14	38.74995	76.36813	5	no				1	Old nest, did not excavate. Emerged 8-Oct. Overwintering nest; Excavated 26-May 9 egg shells 3 dead eggs
104	3-Jul-14	38.75084	76.37033	5	yes	2				Old nest, eggs not measured. Excavated 24-Oct; 1 dead egg killed by roots. Total collected=0; Predation by Kingsnake
105	3-Jul-14	38.75169	76.37245	Notch	no	9	99.4	11.04	8	Overwintering nest; Emerged 22-Apr; Excavated 26-May egg shells
106	3-Jul-14	38.75229	76.37468	Notch	no	8+				Old nest, did not excavate. Combined ring with nest 107. Emerged 8-Sep. Excavated 19-Sep; 5 hatchlings, 5 dead eggs, both temp logs. Total collected from combined nest=16
107	3-Jul-14	38.75229	76.37468	Notch	no	6	80	13.33		Combined ring with nest 106. Emerged 8-Sep. Excavated 19-Sep; 5 hatchlings, 5 dead eggs, both temp logs. Total collected from combined nest=16
108	3-Jul-14	38.75226	76.37467	Notch	no	12	130.9	10.91	8	Emerged 16-Oct. Overwintering nest; Emerged 13 May; Excavated 26-May, 3 dead eggs and 7+ egg shells
109	3-Jul-14	38.75273	76.37435	Notch	no	17	164.7	9.69	15	Emerged 7-Oct. Overwintering nest; Emerged 22-Apr; Excavated 18-May, egg shells

Nest	Date	Latitude	Longitude	Cell #	Predation	Clutch	Total	Average	Number of	Comments
#	Found		· ·			Size	Mass (g)	Mass (g)	Hatchlings	
110	3-Jul-14	38.77315	76.37635	1 BC	no	13	149.3	11.48	11	Overwintering nest; Emerged 22-Apr; Excavated 16-May 6+ egg shells
111	3-Jul-14	38.76503	76.38148	3 CD	no	12	125.2	10.43		Relocated to Hofstra University
112	7-Jul-14	38.74963	76.36729	5	no					Old nest, did not excavate. Overwintering nest; excavated 26 May, 6 dead eggs, 2 egg shells
113	7-Jul-14	38.75125	76.37427	Notch	no					Old nest, did not excavate. Overwintering nest excavated 26 May, 2 dead eggs, 10+ egg shells
114	7-Jul-14	38.75320	76.37399	Notch	yes ; partial				16	PI 484C7C2360 (kingsnake) found eating eggs. Old nest, did not dig up. Emerged 8-Oct. Overwintering nest. Emerged 8-Oct and 17 Apr; Excavated 21 May egg shells
115	7-Jul-14	38.75508	76.38005	4D	yes; full					Fully depredated
116	8-Jul-14	38.76090	76.38003	3	no	14	142.3	10.16		3-Oct high tide; 8 dead eggs and temp log. Total collected=0
117	8-Jul-14	38.76101	76.38005	3	no	12	125.5	10.46	12	Emerged 8-Sep. Excavated 24-Sep; 4 hatchlings and temp log. Total collected=12
118	8-Jul-14	38.76099	76.38007	3	no	11	121.4	11.04	10	High tide 8-Sep; 10 hatchlings and temp log. Total collected=10
119	8-Jul-14	38.77147	76.38085	1 AB	no	12	113.9	9.49	7	Nest relocated from 3CD (WP119). Emerged 3- Sep. Excavated 15-Sep; 5 dead eggs and temp log. Total collected=7; Predation by kingsnake
120	8-Jul-14	38.75340	76.37377	Notch	yes; full					Fully depredated
121	8-Jul-14	38.74998	76.36817	5	no	12	133.8	11.15		3-Oct high tide; only egg shells and temp log. Total collected=0
122	8-Jul-14	38.75009	76.36835	5	no	15	146.5	9.77		Overwintering nest; Excavated 26-May, 2 dead eggs, 9+ egg shells
123	9-Jul-14	38.74954	76.36719	5	no	8	60.8	7.60		Overwintering nest; Excavated 26-May egg shells
124	9-Jul-14	38.74961	76.36727	5	yes; full					Depredated by ants. Deposited clutch found on top of ground with no apparent nest dug.
125	9-Jul-14	38.74987	76.36792	5	no				6	Old nest, did not excavate. Emerged 3-Sep. Excavated 15-Sep; 3 hatchlings and 2 dead eggs. Total collected=6

Nest #	Date Found	Latitude	Longitude	Cell #	Predation	Clutch Size	Total	Average	Number of Hatchlings	Comments
		00 = 100=		_			Mass (g)	Mass (g)		- 1400 - 1400 - 11 11 II
126	9-Jul-14	38.74987	76.36798	5	no	14	137.9	9.85	8	Emerged 10-Sep. Excavated 19-Sep; 1 hatchling, 4 dead eggs, no temp log found. Total collected=8
127	9-Jul-14	38.75131	76.37436	Notch	no	16	176.4	11.03	7	Overwintering nest; Emerged 11-May, Excavated 22-May 6 dead eggs
128	9-Jul-14	38.75182	76.37471	Notch	no	19	192.9	10.15		Combined ring with nest 129. Overwintering nest. Emerged 22-Apr, Excavated 22-May 5 dead eggs
129	9-Jul-14	38.75182	76.37471	Notch	no					Old nest, did not dig up. Combined ring with nest 128. Overwintering nest; Emerged 22-Apr, Excavated 22-May 5 dead eggs
130	9-Jul-14	38.75202	76.37469	Notch	no				6	Old nest, did not dig up. Emerged 2-Sep. Excavated 12-Sep; 4 dead eggs. Total collected=6
131	10-Jul-14	38.75569	76.37854	4 CD	no				6	Old nest, did not dig up. Emerged 11-Sep. Overwintering nest; Excavted 26 May 3 dead eggs
132	10-Jul-14	38.75234	76.37460	Notch	no				16	Old nest, did not dig up. Emerged 8-Sep. Overwintering nest; Excvated 21-May 3 dead eggs
133	10-Jul-14	38.75249	76.37455	Notch	no	12	125.1	10.43	9	Emerged 12-Sep. Excavated 26-Sep; egg shells and temp log. Total collected=9
134	11-Jul-14	38.76058	76.37987	3	no	15	153.3	10.22		Washed out 23-June. Total collected=0
135	11-Jul-14	38.75160	76.37260	Notch	no				1	Old nest, did not dig up. Overwintering nest. Emerged 6-May; Excavted 26-May 2 dead eggs, 10+ egg shells
136	11-Jul-14	38.75219	76.37470	Notch	no	19	185.1	9.74	20	Overwintering nest; Emerged 15-Apr; Excavated 22-May 3 dead eggs, 8+ emerged shells
137	14-Jul-14	38.76104	76.38011	3	no				1	Old nest, did not dig up. Complete emergence 8-Aug; one hatchling collected.
138	14-Jul-14	38.75246	76.37457	Notch	no				13	Old nest, did not dig up. Emerged 29-Aug. Excavated 9-Sep; 2 dead eggs. Total collected=13

Nest	Date	Latitude	Longitude	Cell #	Predation		Total	Average	Number of	Comments
#	Found					Size	Mass (g)	Mass (g)	Hatchlings	
139	15-Jul-14	38.75274	76.37431	Notch	no	14	127.6	9.11	12	Overwintering nest; Emerged 17-Apr, 1 dead egg
140	16-Jul-14	38.75281	76.37432	Notch	no	13	140.2	10.78	7	Emerged 8-Oct. Overwintering nest; Excavated 21 May 4 dead eggs.
141	18-Jul-14	38.76083	76.37998	3	no	10	98.3	9.83	6	Emerged 29-Sep. 3-Oct high tide; 2 hatchlings and temp log. Total collected=6
142	18-Jul-14	38.76108	76.38011	З	no	12	114.4	9.53		13-Aug high tide; nest survived. 25-Aug high tide; no eggs found, fate of nest unknown. Total collected=0
143	21-Jul-14	38.76097	76.38010	3	no				12	Old nest, did not dig up. Excavated 9/24: 12 hatchlings and temp log. Total collected=12
144	21-Jul-14	38.76099	76.38012	3	no	14	149.8	10.70		Nest relocated up from water line. Excavated 9/24: 12 dead eggs, temp log. Nest likely drowned. Total collected=0
145	24-Jul-14	38.76096	76.38008	3	no					Old nest, did not excavate. 3-Oct high tide; nothing found, fate of nest unknown. Total collected=0
146	24-Jul-14	38.76080	76.38001	3	no	11	120.8	10.98	8	3-Oct high tide; 8 hatchlings and temp log. 4 of the hatchlings had significant yolk sacs left; kept in isolation until sacs were absorbed. Total collected=8
147	7-Aug-14	38.75186	76.37470	Notch					13	Emergent nest; eggs left, did not excavate. Emerged 23-Oct. Overwinter; Excavated 22-May, 3 dead eggs
148	14-Aug-14	38.75272	76.37434	Notch						Emergest nest; egg shells found
149	14-Aug-14	38.75141	76.37177	5						Emergent nest; egg shells and 4 dead eggs found.
150	18-Aug-14	38.75115	76.36967	5						Emergent nest; egg shells found
151	26-Aug-14	38.74982	76.36796	5						Emergent nest; egg shells found
152	26-Aug-14		76.37470		yes; Partial				2	Emergent nest; 2 hatchlings, 2 dead well-developed eggs being eaten by ants, egg shells found as well as hatchling tracks away
153	2-Sep-14	38.76089	76.38004	3					1	Emergent nest; 1 hatchling found
154	2-Sep-14	38.75211	76.37470	Notch					1	Emergent nest; 1 hatchling found

Terrapin report - Appendix 1 36

Nest	Date	Latitude	Longitude	Cell #	Predation	Clutch	Total	Average	Number of	Comments
#	Found					Size	Mass (g)	Mass (g)	Hatchlings	
155	2-Sep-14	38.75177	76.37469	Notch						Emergent nest; egg shells found
156	3-Sep-14	38.75168	76.37467	Notch					1	Emergent nest; 1 hatchling collected
157	8-Sep-14	38.74986	76.36798	5						Emergent nest; egg shells found
158	12-Sep-14	38.75162	76.37260	Notch						Emergent nest; egg shells found
159	16-Sep-14	38.75234	76.37465	Notch						Emergent nest; egg shells found
160	18-Sep-14	38.77061	76.37906	1AB						Emergent nest; 1 dead egg found
161	18-Sep-14	38.75305	76.37413	Notch						Emergent nest; egg shells found
162	22-Apr-15	38.75183	76.37416	Notch						Emergent nest; egg shells found
163	13-May-15	38.75000	76.37416	Notch						Emergent nest; egg shells found
164	26-May-15	38.75160	76.37254	Notch						Emergent nest; egg shells found
165	26-May-15	38.75134	76.37143	5						Emergent nest; egg shells found

Date	ID1	ID2	Notch ID	Nest	Plastron	Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
22-Aug-14	04147	04148	1R1L	1	28.4	31.9	28.2	16.9	8.9	HS (AE)
22-Aug-14	04149	04150	1R1L	1	27.0	31.6	26.8	17.6	7.7	HS (AE)
22-Aug-14	04151		1R1L	1	27.8	33.3	28.3	17.9	9.2	HS (AE)
22-Aug-14	04152	04153	1R1L	1	27.9	32.1	28.1	17.4	9.0	HS (AE)
22-Aug-14	04154	04155	1R1L	1	28.2	32.8	28.1	17.2	9.1	HS (AE)
22-Aug-14	04156		1R1L	1	28.2	32.5	27.7	16.9	8.8	HS (AE)
22-Aug-14	04672	04673	12R9L	1	30.4	34.4	30.2	17.6	9.9	sarah's performance hatchling, measured and released 9- Oct
22-Aug-14	04674		12R9L	1	30.4	34.8	30.0	17.0	9.9	sarah's performance hatchling, measured and released 9- Aug
22-Aug-14	04189	04190	1R1L	1	28.4	33.5	28.8	17.2	9.3	HS (AE)
2-Sep-14	04308	04309	12R9L	1	22.7	26.4	23.9	15.0	4.5	
20-Aug-14	04131		12L	3	23.2	27.5	23.6	15.5	5.7	HS (AE)
20-Aug-14	04132	04133	12L	3	26.6	31.7	27.8	16.4	7.5	HS (AE)
20-Aug-14	04134	04135	12L	3	26.3	30.5	26.6	16.0	7.2	HS (AE)
20-Aug-14	04136		12L	3	27.2	30.5	27.7	16.0	7.5	HS (AE)
20-Aug-14	04137	04138	12L	3	25.8	30.2	27.4	16.0	7.3	HS (AE)
20-Aug-14	04139	04140	12L	3	24.6	28.4	25.7	14.9	6	HS (AE)
20-Aug-14	04142	04143	12L	3	24.8	29.3	26.1	15.0	5.9	HS (AE)
20-Aug-14	04144	04145	12L	3	26.0	29.5	26.2	16.3	7.1	HS (AE)
20-Aug-14	04667	04668	12R9L	3	28.5	33.0	28.9	17.1	8.6	sarah's performance hatchling, measured and released 9- Oct
20-Aug-14	04670	04671	12R9L	3	28.2	33.6	29.8	17.4	9.4	sarah's performance hatchling, measured and released 9- Oct
15-Sep-14	05827		12R9L	3	26.9	31.0	28.3	15.1	6.6	
2-Sep-14	04340		3R3L	4	30.2	34.0	29.4	17.4	9.2	HS (AE)
2-Sep-14	04341	04342	3R3L	4	28.4	32.5	28.8	16.8	8.3	HS (AE)
2-Sep-14	03343	04344	3R3L	4	27.6	32.7	29.9	17.6	9.2	HS (AE)
2-Sep-14	04346	04347	3R3L	4	27.8	32.7	29.6	17.3	8.8	HS (AE)
2-Sep-14	04350		3R3L	4	26.5	30.5	28.2	15.7	7.2	HS (AE)
2-Sep-14	04351	04352	3R3L	4	28.5	33.1	29.0	17.3	8.9	HS (AE)
2-Sep-14	04353	04354	3R3L	4	29.1	32.5	29.8	17.2	9.2	HS (AE)
2-Sep-14	04355		3R3L	4	29.5	33.4	30.2	17.4	9.3	HS (AE)
2-Sep-14	04356	04357	3R3L	4	29.1	33.1	30.3	17.1	9.3	HS (AE)
5-Aug-14	05747		1R12R9L	5	25.7	29.4	26.9	17.2	8.1	HS (AE) ; accidental 12R9L
5-Aug-14	05748	05749	2R12R9L	5	27.3	30.8	27.2	17.4	8.2	HS (AE) ; accidental 12R9L

Date	ID1	ID2	Notch ID	Nest	Plastron	Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
6-Aug-14	05753	05754	1R12R9L	5	25.3	28.9	26.8	17.0	8.3	HS (AE) ; accidental 12R9L
6-Aug-14	05757	05758	1R12R9L	5	27.7	30.6	26.3	16.7	8.1	HS (AE) ; accidental 12R9L
7-Aug-14	05760	05761	1R12R9L	5	26.6	30.9	27.1	16.1	8.4	HS (AE) ; accidental 12R9L
7-Aug-14	05762		1R12R9L	5	26.5	31.2	26.9	16.1	7.9	HS (AE) ; accidental 12R9L
11-Aug-14	04099		3L	6	28.7	31.5	27.9	16.8	8.1	HS (NAIB)
11-Aug-14	04101		3L	6	28.0	32.0	28.5	16.6	8.0	HS (NAIB)
11-Aug-14	04665	04666	12R9L	6	30.2	36.0	31.1	18.5	11.2	sarah's performance hatchling, measured and released 9-Oct
11-Aug-14	06085		12R9L	6	37.2	44.3	40.0	21.8	20.0	sarah's performance hatchling, measured and released 22- Oct
12-Aug-14	04107	04108	3L	6	29.5	33.1	30.3	15.9	8.6	HS (NAIB)
12-Aug-14	04109	04110	3L	6	26.6	32.1	29.9	16.3	8.3	HS (NAIB)
8-Aug-14	05767		2R	7	25.7	30.2	27.2	16.7	7.5	HS (NAIB)
8-Aug-14	05768	05769	2R	7	26.4	30.5	26.9	16.5	8.0	HS (NAIB)
8-Aug-14	05770	05771	2R	7	26.2	30.9	27.5	16.8	8.1	HS (NAIB)
8-Aug-14	05772		2R	7	25.9	30.1	27.4	16.2	8.1	HS (NAIB)
8-Aug-14	05773	05774	2R	7	27.3	31.8	27.3	16.5	7.9	HS (NAIB)
2-Sep-14	04323	04324	3R2L	9	28.2	30.4	28.1	15.9	8.3	HS (AE)
2-Sep-14	04325		3R2L	9	29.0	31.9	28.2	16.8	8.0	HS (AE)
2-Sep-14	04380		3R2L	9	24.8	28.4	24.8	15.7	6.7	released into 1C; not a HS
2-Sep-14	04326	04327	3R2L	9	27.8	33.3	29.6	16.5	8.1	HS (AE)
2-Sep-14	04328	04329	3R2L	9	28.9	31.8	28.9	16.0	7.9	HS (AE)
2-Sep-14	04331	04332	3R2L	9	27.8	31.9	28.9	16.2	8.0	HS (AE)
2-Sep-14	04333	04334	3R2L	9	29.2	33.3	29.0	16.7	8.3	HS (AE)
2-Sep-14	04335		3R2L	9	28.7	32.0	28.9	16.9	8.2	HS (AE)
2-Sep-14	04336	04337	3R2L	9	30.0	32.6	29.6	16.7	8.5	HS (AE)
2-Sep-14	04338	04339	3R2L	9	30.0	33.6	28.9	16.1	8.4	HS (AE)
3-Sep-14	04435	04436	3R2L	9	28.3	31.5	27.1	17.0	8.1	HS (AE)
3-Sep-14	04437		3R2L	9	26.7	30.7	27.2	16.4	6.8	HS (AE)
15-Sep-14	05808	05809	12R9L	9	27.8	31.2	29.0	16.1	7.1	
15-Sep-14	05810	05811	12R9L	9	28.2	32.6	30.4	16.6	8.2	
26-Sep-14	05895	05896	12R9L	10	28.4	31.4	28.5	16.7	7.5	
26-Sep-14	05897	05898	12R9L	10	28.2	32.0	28.5	16.4	7.8	
26-Sep-14	05899		12R9L	10	28.4	32.2	28.5	16.4	7.9	
26-Sep-14	05900	05901	12R9L	10	28.4	31.9	27.9	16.8	7.4	
26-Sep-14	05902	05903	12R9L	10	28.7	31.5	28.0	16.8	7.8	

Date	ID1	ID2	Notch ID	Nest	Plastron	Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
26-Sep-14	05922	05923	12R9L	10	28.8	31.6	28.5	16.6	6.8	
26-Sep-14	05914	05915	12R9L	10	28.8	33.1	28.0	16.3	7.5	
26-Sep-14	05916		12R9L	10	28.7	32.6	28.7	16.3	7.9	
26-Sep-14	05917	05918	12R9L	10	28.5	33.6	28.5	17.6	8.4	
26-Sep-14	05919	05920	12R9L	10	29.0	32.5	28.8	15.9	8.0	
6-Apr-15	06117		2R11L	11	28.1	30.1	26.0	16.0	7.1	Eyes won't open
6-Apr-15	06118	06119	2R11L	11	27.0	30.7	26.6	15.3	6.4	
16-Apr-15	06205	06206	2R11L	11	26.9	30.7	26.8	15.3	6.4	Sarah performance
16-Apr-15	06223	06224	2R11L	11	26.1	29.5	25.7	15.2	6.2	Ano 2nd costal both sides, Sarah performance
15-Apr-15	06128	06129	2R11L	12	27.1	31.6	26.9	15.6	6.5	Sarah performance, Ano V1
15-Apr-15	06312		2R11L	12	28.1	32.8	28.7	16.0	7.1	Sarah performance, Ano V1
15-Apr-15	06133	06134	2R11L	12	27.7	31.7	27.3	16.0	7.0	Ano V1
15-Apr-15	06135	06136	2R11L	12	28.4	32.1	28.4	15.5	7.1	
15-Apr-15	06137		2R11L	12	27.1	32.2	28.7	16.0	7.6	
15-Apr-15	06138	06139	2R11L	12	27.1	31.0	28.2	15.9	7.0	Ano V1
15-Apr-15	06140	06141	2R11L	12	27.6	31.9	27.5	15.8	7.3	
16-Apr-15	06225	06226	2R11L	12	27.6	31.1	28.0	15.7	7.1	
16-Apr-15	06227	06228	2R11L	12	27.3	32.3	27.4	16.7	7.4	Ano V1
16-Apr-15	06229		2R11L	12	28.1	32.4	27.3	16.2	7.2	
16-Apr-15	06230	06231	2R11L	12	27.1	31.3	27.4	16.2	7.0	Ano V1 and V5
31-Jul-14	05710	05711	12R9L	13	26.9	30.6	27.4	16.5	8.7	
4-Aug-14	05712		12R9L	13	25.1	30.4	27.1	16.7	8.0	
6-Aug-14	05755	05756	3R12R9L	13	26.6	31.4	28.9	17.0	7.9	HS (NAIB) ; accidental 12R9L
6-Aug-14				13	25.6	29.3	26.6	16.3	7.6	found dead in ring
9-Sep-14	04632	04633	12R9L	14	27.9	31.6	28.5	16.7	7.5	
6-Oct-14	05973		12R9L	15	24.3	27.6	25.1	15.0	5.2	
6-Oct-14	05974	05975	12R9L	15	27.3	31.0	27.4	16.0	7.3	
6-Oct-14	05976		12R9L	15	24.8	28.1	25.9	15.0	5.8	
6-Oct-14	05977	05978	12R9L	15	24.4	28.5	25.4	14.8	5.7	
6-Oct-14	05979	05980	12R9L	15	24.4	27.8	25.0	15.7	5.9	
6-Oct-14	05981		12R9L	15	24.3	27.4	24.2	14.4	5.2	
6-Oct-14	05982	05983	12R9L	15	24.7	28.5	25.0	15.2	6.1	
6-Oct-14	05984	05985	12R9L	15	23.9	27.7	24.8	15.1	5.7	
6-Oct-14	05986		12R9L	15	23.7	27.3	27.5	14.9	5.7	
6-Oct-14	05987	05988	12R9L	15	24.4	26.7	24.9	14.6	5.4	
6-Oct-14	05989	05990	12R9L	15	25.0	27.9	24.4	14.9	5.6	

Date	ID1	ID2	Notch ID	Nest	Plastron	Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
6-Oct-14	05991		12R9L	15	24.4	27.6	25.8	15.5	5.7	
6-Oct-14	05992	05993	12R9L	15	24.3	27.5	24.8	15.3	5.9	
6-Oct-14	05994	05995	12R9L	15	24.0	27.4	24.9	15.4	5.9	
8-Oct-14	06016		12R9L	15	24.4	27.1	24.4	14.3	5.4	
11-Aug-14	04072	04073	1L	17	24.3	28.3	24.1	15.4	5.9	HS (NAIB)
11-Aug-14	04074		1L	17	26.0	30.6	27.1	15.1	6.7	HS (NAIB)
11-Aug-14	04075	04076	1L	17	26.9	31.8	27.5	15.4	7.1	HS (NAIB)
11-Aug-14	04079		1L	17	26.2	31.4	27.5	15.5	6.8	HS (NAIB)
11-Aug-14	04081		1L	17	25.4	30.3	26.8	15.4	6.7	HS (NAIB)
11-Aug-14	06081	06082	12R9L	17	28.7	34.8	30.4	17.2	9.5	sarah's performance hatchling, measured and released 22-
										Oct
11-Aug-14	06098	06099	12R9L	17	33.1	40.1	34.2	19.0	13.7	sarah's performance hatchling, measured and released 22-
										Oct
31-Jul-14	05707		12R9L	18	27.2	28.9	23.4	14.9	6.3	
31-Jul-14	05708	05709	12R9L	18	27.0	28.8	24.9	17.1	7.4	
4-Aug-14	05713	05714	12R9L	18	27.2	31.1	27.2	17.0	7.3	sarah's performance hatchling, released 22-Oct
4-Aug-14	05715	05716	12R9L	18	26.4	28.7	25.4	15.0	6.5	sarah's performance hatchling, released 22-Oct
5-Aug-14	05750	05751	2R12R9L	18	26.6	30.1	26.6	16.4	7.2	HS (AE); accidental 12R9L, 13 left marginals
6-Aug-14	05752		2R12R9L	18	26.3	29.7	26.2	16.4	7.1	HS (AE) ; accidental 12R9L
23-Oct-14	06115		12R9L	20	21.9	25.7	22.9	14.5	4.7	
11-Aug-14	05780	05781	9R	24	22.1	25.4	20.4	15.8	4.9	HS (NAIB)
12-Aug-14	04111		9R	24	21.8	24.7	22.2	15.1	4.8	dead 15-Aug
12-Aug-14	04112	04113	9R	24	24.7	28.2	23.8	14.7	5.8	HS (NAIB)
12-Aug-14	04114	04115	9R	24	24.3	28.1	23.2	14.5	5.6	HS (NAIB)
22-Aug-14	04146	//	9R	24	23.7	27.7	23.9	13.8	4.5	HS (MES)
16-Apr-15	06217		2R11L	27	27.1	30.8	26.4	15.7	6.5	
16-Apr-15	06218	06219	2R11L	27	27.5	30.1	27.0	15.0	6.5	
16-Apr-15	06220	06221	2R11L	27	26.1	30.7	26.7	16.2	6.8	Ano V1
17-Apr-15	06232		2R11L	27	27.8	31.3	26.5	15.6	6.6	
17-Apr-15	06235	06236	2R11L	27	27.2	30.6	26.8	15.5	6.8	Sarah performance
17-Apr-15	06237	06238	2R11L	27	27.8	31.4	26.4	16.2	6.7	
17-Apr-15	06252	06253	2R11L	27	27.8	30.8	27.5	15.9	7.0	Sarah performance
17-Apr-15	06277	06278	2R11L	27	27.3	30.5	27.1	15.1	6.5	Ano V4,12 costals
22-Apr-15	06279	.	2R11L	27	28.8	32.7	28.2	16.5	8.2	13 right marginals
22-Apr-15	06280	06281	2R11L	27	26.5	30.5	26.5	15.8	6.6	
22-Apr-15	06282	06283	2R11L	27	28.4	31.7	28.1	15.9	7.4	

Date	ID1	ID2	Notch ID	Nest	Plastron	Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
22-Apr-15	06284		2R11L	27	28.4	32.7	29.1	15.6	7.9	Ano V3 and V4, 10 costals
10-Sep-14	04654		12R9L	29	23.5	36.8	25.8	15.6	5.6	
19-Sep-14	05853	05854	12R9L	29	23.2	28.3	22.7	16.3	5.3	26 marginals
26-Sep-14	05904		12R9L	33	26.9	30.4	27.7	16.1	6.5	
26-Sep-14	05905	05906	12R9L	33	24.6	29.4	26.7	15.8	6.3	
26-Sep-14	05907	05908	12R9L	33	27.1	31.0	27.7	16.1	7.1	
26-Sep-14	05909		12R9L	33	27.0	30.6	29.3	15.3	7.0	
22-Apr-15	06287	06288	2R11L	33	25.9	30.8	28.5	15.8	7.1	
15-Apr-15	06142		2R11L	34	24.2	26.2	23.5	14.9	4.5	Sarah performance, Ano V5, 13 Right marginals
15-Apr-15	06143	06144	2R11L	34	22.8	26.8	24.7	14.2	4.8	Sarah performance
15-Apr-15	06145	06146	2R11L	34	23.6	25.9	23.8	13.9	4.4	
15-Apr-15	06147		2R11L	34	21.8	25.9	21.9	13.7	4.1	
15-Apr-15	06148	06149	2R11L	34	21.9	24.7	23.5	13.7	4.5	
15-Apr-15	06172		2R11L	34	22.4	26.2	22.8	14.3	4.5	
15-Apr-15	06173	06174	2R11L	34	22.6	27.5	25.3	14.7	5.0	
15-Apr-15	06175		2R11L	34	22.2	25.3	23.2	14.3	4.6	Curly tail
15-Apr-15	06176	06177	2R11L	34	23.8	26.9	23.1	14.8	4.7	
15-Apr-15	06178	06179	2R11L	34	23.1	25.6	24.1	14.4	4.8	26 marginals
15-Apr-15	06180	06181	2R11L	34	24.5	26.9	24.4	14.4	4.9	Ano V1 and V5
15-Apr-15	06182		2R11L	34	22.4	27.0	24.2	14.6	5.0	Ano V1, 26 marginals
22-Apr-15	06289		2R11L	34	24.5	27.3	23.8	13.8	4.9	
22-Apr-15	06291		2R11L	34	22.5	25.7	23.0	13.8	4.3	
22-Apr-15	06292	06293	2R11L	34	22.9	27.1	23.7	14.6	4.8	
22-Apr-15	06294	06295	2R11L	34	23.5	26.6	23.8	14.2	4.8	
2-Sep-14	04298	04299	12R9L	38	22.8	26.2	23.3	15.3	5.0	
3-Sep-14	04452		12R9L	38	24.5	26.4	23.7	16.1	5.8	Ano V4-5
11-Aug-14	04062	04063	12R	39	27.2	31.1	27.9	16.5	7.6	HS (NAIB)
11-Aug-14	04064		12R	39	26.8	30.7	27.3	16.5	7.1	HS (NAIB)
11-Aug-14	04066		12R	39	26.3	30.5	27.4	16.1	7.1	HS (NAIB)
11-Aug-14	04067	04068	12R	39	27.2	31.3	27.9	17.3	7.8	HS (NAIB)
11-Aug-14	04069		12R	39	27.3	30.1	26.5	16.2	7.6	HS (NAIB)
11-Aug-14	06083	06084	12R9L	39	34.2	39.1	33.7	19.7	14.2	sarah's performance hatchling, measured and released 22-
										Oct
11-Aug-14	06093	06094	12R9L	39	33.9	38.7	32.9	19.2	15.2	sarah's performance hatchling, measured and released 22-
										Oct
15-Apr-15	06150	06151	2R11L	40	27.7	31.8	28.2	16.0	6.9	Sarah performance

Date	ID1	ID2	Notch ID	Nest	Plastron	Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
15-Apr-15	06152		2R11L	40	28.6	32.4	27.3	16.4	7.0	Sarah performance
15-Apr-15	06153	06154	2R11L	40	27.8	32.0	28.5	15.8	6.8	
15-Apr-15	06185	06186	2R11L	40	26.7	31.6	27.7	16.2	7.1	26 marginals
15-Apr-15	06187		2R11L	40	26.5	30.6	28.0	16.7	6.8	Ano V5
15-Apr-15	06188	06189	2R11L	40	27.0	31.6	28.2	16.0	6.7	Ano V5
15-Apr-15	06190	06191	2R11L	40	26.9	32.4	27.7	16.0	7.1	Ano V5, 26 Marginals
15-Apr-15	06192	06193	2R11L	40	28.6	31.1	28.0	16.0	7.0	Ano V5
15-Apr-15	06194		2R11L	40	26.5	30.8	28.0	16.0	7.0	Ano V5
16-Apr-15	06203	06204	2R11L	40	27.5	31.8	27.7	17.0	7.0	
17-Apr-15	06272	06273	2R11L	40	27.9	32.0	28.3	16.2	7.0	
22-Apr-15	06296		2R11L	40	28.4	31.4	26.8	15.6	6.6	
2-Sep-14	04417		9R1L	41	26.0	29.9	26.8	15.5	6.9	HS (AE)
2-Sep-14	04418	04419	9R1L	41	26.7	29.5	27.1	15.9	7.1	HS (AE)
2-Sep-14	04420	04421	9R1L	41	26.6	30.3	26.8	15.4	7.1	HS (AE), 26 marginals
2-Sep-14	04422		9R1L	41	27.2	30.7	27.7	15.5	7.3	HS (AE)
2-Sep-14	04423	04424	9R1L	41	27.7	30.9	27.3	16.7	7.2	HS (AE)
2-Sep-14	04425	04426	9R1L	41	26.4	30.8	27.5	16.0	7.3	HS (AE)
19-Aug-14				42	24.7	28.1	23.8	14.5	5.7	found dead in ring
22-Aug-14				42	26.2	29.2	25.8	15.2	6.6	found dead in ring
3-Sep-14	04445	04446	12R9L	42	26.4	30.3	27.7	16.0	6.8	
3-Sep-14	04447		12R9L	42	27.2	30.4	26.9	15.8	6.3	
3-Sep-14	04448	04449	12R9L	42	26.1	30.5	27.2	16.7	6.9	
4-May-15	06429	06430	2R11L	43	20.9	25.0	21.2	13.7	3.8	
2-Sep-14	04358	04359	3R9L	44	27.8	31.7	28.3	16.6	8.1	HS (AE)
2-Sep-14	04360		3R9L	44	29.0	32.4	28.5	16.5	8.3	HS (AE)
2-Sep-14	04361	04362	3R9L	44	27.6	32.7	28.9	16.6	8.3	HS (AE)
2-Sep-14	04363	04364	3R9L	44	26.5	30.4	27.5	15.6	7.3	HS (AE)
2-Sep-14	04365		3R9L	44	28.4	31.0	27.9	16.9	8.4	HS (AE)
2-Sep-14	04366	04367	3R9L	44	27.3	31.7	27.8	15.9	7.6	HS (AE)
2-Sep-14	04368	04369	3R9L	44	28.3	31.6	27.9	16.7	7.9	HS (AE)
2-Sep-14	04370		3R9L	44	26.6	31.6	27.3	15.8	7.1	HS (AE)
2-Sep-14	04371	04372	3R9L	44	27.4	30.8	26.8	16.3	7.2	HS (AE)
2-Sep-14	04373	04374	3R9L	44	27.5	31.6	27.9	16.1	7.7	HS (AE)
3-Sep-14	04684		12R9L	44	28.7	31.4	28.4	16.0	8.4	sarah's performance hatchling, measured and released 9-
										Oct
4-Sep-14	04522		12R9L	44	28.0	32.2	27.9	16.9	7.7	

Date	ID1	ID2	Notch ID	Nest	Plastron	Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
15-Sep-14	05807		12R9L	44	27.5	31.0	27.9	16.1	7.3	
15-Apr-15	06155	06156	2R11L	45	28.4	28.7	25.2	16.1	6.7	Ano V4 and V5, 13 Left marginals
16-Apr-15	06208	06209	2R11L	45	26.4	29.1	26.3	16.0	6.5	Sarah performance, Ano V1 and V5
16-Apr-15	06210	06211	2R11L	45	27.2	31.0	27.7	15.8	6.8	Sarah perf., 13 Right marginals
16-Apr-15	06212		2R11L	45	27.9	30.0	24.1	16.2	6.2	Slightly kyophotic, Ano V5, 13 Right marginals
16-Apr-15	06213	06214	2R11L	45	27.4	30.8	27.0	16.3	7.1	
16-Apr-15	06215	06216	2R11L	45	28.1	30.9	26.7	16.3	7.2	
22-Apr-15	06298		2R11L	45	25.8	30.0	27.0	15.8	6.5	Ano V1
22-Apr-15	06299		2R11L	45	26.7	30.6	26.6	16.3	6.7	Ano V1, V4, V5
22-Apr-15	06300	06301	2R11L	45	28.5	31.0	26.9	16.4	6.8	Ano V1
22-Apr-15	06302	06303	2R11L	45	28.1	31.6	27.2	17.0	7.2	Ano V2, V3, 10 costals, 13 Left marginals
22-Apr-15	06304	06305	2R11L	45	27.4	30.3	27.2	16.6	6.8	Ano V5, 26 marginals
22-Apr-15	06306		2R11L	45	27.9	30.5	26.3	15.7	6.6	
22-Apr-15	06307	06308	2R11L	45	27.3	30.7	26.9	16.1	6.7	Ano V3, V4
27-Aug-14	04221	04222	2R3L	47	27.8	31.5	28.6	17.4	8.1	HS (AE)
27-Aug-14	04224	04225	2R3L	47	29.0	31.6	28.0	17.1	8.3	HS (AE)
27-Aug-14	04226	04227	2R3L	47	27.2	30.5	26.9	17.4	7.6	HS (AE)
2-Sep-14	04375		2R3L	47	29.2	33.0	29.1	16.6	8.5	HS (AE)
2-Sep-14	04376	04377	2R3L	47	27.8	31.7	28.0	16.6	8.0	HS (AE)
2-Sep-14	04378	04379	2R3L	47	28.3	31.5	28.6	16.0	8.0	HS (AE)
2-Sep-14				47	23.9	26.3	25.1	16.0	6.0	dead 3-Sep
3-Sep-14	04462		12R9L	48	17.4	22.6	19.2	13.3	2.8	
3-Sep-14	04463	04464	12R9L	48	27.2	30.1	25.4	15.6	6.8	
3-Sep-14	04465	04466	12R9L	48	22.8	26.6	23.1	14.8	4.5	
3-Sep-14	04475	04476	9R3L	48	26.6	29.4	26.6	15.4	6.5	HS (MES)
3-Sep-14	04495	04496	12R9L	48	23.1	25.8	22.5	14.2	4.2	13 right marginals
3-Sep-14	04497		12R9L	48	28.9	31.7	26.6	18.2	8.5	Ano V2-3, V5
15-Sep-14	05813	05814	12R9L	48	20.3	24.3	20.8	13.9	3.7	26 marginals
27-Aug-14	04218		2R2L	50	26.5	30.1	26.9	17.2	7.1	HS (MES)
27-Aug-14	04219	04220	2R2L	50	26.4	30.8	27.9	17.0	7.7	HS (MES)
11-Sep-14	04686		12R9L	50	27.8	30.9	28.5	17.5	7.9	
11-Aug-14	05782		10R	51	26.2	29.8	26.8	16.5	7.0	HS (AE)
11-Aug-14	05783	05784	10R	51	27.1	29.8	28.3	16.0	7.8	HS (AE)
11-Aug-14	05785	05786	10R	51	25.8	29.1	26.0	15.8	6.8	HS (AE)
11-Aug-14	05787		10R	51	27.2	30.1	25.9	17.0	7.5	HS (AE)
11-Aug-14	05788	05789	10R	51	28.2	30.7	26.0	16.1	7.2	HS (AE)

Date	ID1	ID2	Notch ID	Nest	Plastron	Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
11-Aug-14	04037	04038	10R	51	26.2	29.0	25.3	16.0	6.7	HS (AE)
11-Aug-14	04036		10R	51	26.9	29.3	26.2	16.2	7.5	HS (AE)
11-Aug-14	04039		10R	51	26.3	30.5	26.8	16.7	7.6	HS (AE)
11-Aug-14	04040	04041	10R	51	25.1	29.2	25.4	15.9	6.8	HS (AE)
11-Aug-14	04042	04043	10R	51	26.9	30.9	27.2	16.5	8.0	HS (AE)
11-Aug-14	06092		12R9L	51	35.5	41.6	35.8	19.8	15.2	sarah's performance hatchling, measured and released 22- Oct
11-Aug-14	06100		12R9L	51	37.1	42.8	37.0	20.3	16.6	
11-Aug-14				51	26.1	29.2	27.2	17.3		dead
11-Aug-14	04044		11R	52	25.5	30.1	27.8	16.9	7.9	HS (NAIB)
11-Aug-14	04045	04046	11R	52	27.6	29.8	26.3	17.5	8.0	HS (NAIB)
11-Aug-14	04049		11R	52	27.1	31.1	27.9	18.0	8.8	HS (NAIB)
11-Aug-14	04050	04051	11R	52	27.4	29.7	27.1	18.3	8.4	HS (NAIB)
11-Aug-14	04052	04053	11R	52	26.2	30.3	24.6	18.1	7.7	HS (NAIB)
11-Aug-14	04054		11R	52	24.5	29.3	25.7	17.8	7.6	HS (NAIB)
11-Aug-14	04057	04058	11R	52	6.6	30.4	25.9	17.3	8.0	HS (NAIB)
11-Aug-14	04059		11R	52	25.2	30.4	25.6	17.8	8.2	HS (NAIB)
11-Aug-14	06088	06089	12R9L	52	34.7	41.7	37.9	20.4	17.0	sarah's performance hatchling, measured and released 22-
										Oct, ano v5
11-Aug-14	06090		12R9L	52	34.1	40.7	35.7	19.9	15.2	sarah's performance hatchling, measured and released 22- Oct
19-Aug-14	04127	04128	11L	53	25.8	29.9	26.8	17.2	7.3	HS (AE)
19-Aug-14	04129	04130	11L	53	26.0	31.5	28.4	16.8	7.9	HS (AE)
19-Aug-14	06078	06079	12R9L	53	32.9	40.9	36.2	21.0	15.5	sarah's performance hatchling, measured and released 22- Oct
19-Aug-14	06086	06087	12R9L	53	31.5	39.4	35.2	19.7	14.5	sarah's performance hatchling, measured and released 22- Oct
29-Aug-14	04265		12R9L	53	27.3	30.9	26.3	17.9	7.6	
29-Aug-14	04266	04267	12R9L	53	23.0	28.9	27.2	16.3	6.8	
13-Apr-15	06120		2R11L	55	27.5	31.5	28.3	16.6	7.5	Sarah performance
15-Apr-15	06157		2R11L	55	28.0	31.7	28.0	16.9	7.8	Sarah performance
15-Apr-15	06158	06159	2R11L	55	26.4	30.3	27.4	15.5	6.2	
15-Apr-15	06160	06161	2R11L	55	28.1	31.5	28.4	15.6	7.1	22 marginals total
15-Apr-15	06162		2R11L	55	27.7	31.7	28.9	15.2	7.2	
15-Apr-15	06163	06164	2R11L	55	27.2	30.4	26.0	16.0	6.2	

Date	ID1	ID2	Notch ID	Nest	Plastron	Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
15-Apr-15	06165	06166	2R11L	55	29.2	32.5	29.1	16.4	7.8	
15-Apr-15	06195		2R11L	55	29.2	31.8	28.1	16.2	7.8	
15-Apr-15	06196	06197	2R11L	55	29.0	33.0	30.6	15.5	7.6	
15-Apr-15	06200	06201	2R11L	55	28.5	32.0	28.9	16.3	7.9	
16-Apr-15	06202		2R11L	55	29.1	32.0	29.8	16.2	7.8	
17-Apr-15	06239		2R11L	55	27.7	30.6	28.6	15.9	6.7	Ano V1
17-Apr-15	06241		2R11L	55	28.5	31.2	29.3	15.8	7.1	
17-Apr-15	06254		2R11L	55	25.7	30.7	29.1	15.2	6.5	
17-Apr-15	06255	06256	2R11L	55	26.0	29.9	26.8	15.2	6.0	
22-Apr-15	06311		2R11L	55	29.0	32.0	29.9	15.9	7.9	
22-Apr-15	06312	06313	2R11L	55	27.0	29.9	26.6	15.0	6.0	
6-May-15	06461	06462	2R11L	55	29.5	34.4	30.9	17.9	9.4	
6-May-15	06463	06464	2R11L	55	29.5	32.4	30.3	16.2	8.3	Ano V5
13-May-15	06501	06502	2R11L	55	23.0	27.4	25.1	14.4	5.1	
19-May-15	06520		2R11L	55	25.0	28.9	26.5	15.2	5.5	
19-May-15	06521	06522	2R11L	55	29.7	33.3	29.8	17.1	8.1	Ano V5
19-May-15	06523	06524	2R11L	55	29.3	34.1	30.0	16.7	9.5	
21-May-15	06535		2R11L	55	24.6	28.0	24.4	14.5	5.0	
22-Aug-14	04157	04158	1R2L	56	22.4	24.9	20.5	14.6	4.0	HS (AE), dead 29-Aug
2-Sep-14	04305		12R9L	56	26.4	30.9	27.6	16.8	7.2	
2-Sep-14	04306	04307	12R9L	56	27.4	31.0	27.8	17.7	7.5	
3-Sep-14	04453	04454	12R9L	56	27.5	31.1	26.8	16.7	7.7	
3-Sep-14	04455	04456	12R9L	56	25.7	29.8	27.1	16.5	7.4	
15-Sep-14	05815	05816	12R9L	56	28.1	30.9	27.4	16.1	7.8	
15-Sep-14	05817		12R9L	56	27.1	31.0	27.3	16.7	7.2	
15-Sep-14	05818	05819	12R9L	56	27.1	31.6	28.2	16.6	7.6	
11-Aug-14	04082	04083	2L	57	25.6	29.9	26.2	16.4	7.4	HS (AE), ano V3,4,5
11-Aug-14	04084		2L	57	25.7	29.5	25.7	16.9	7.5	HS (AE)
11-Aug-14	04086		2L	57	25.8	29.5	26.7	16.8	7.6	HS (AE)
11-Aug-14	04087	04088	2L	57	25.2	29.2	26.3	16.1	7.0	HS (AE)
11-Aug-14	04089		2L	57	26.2	30.1	26.7	16.9	7.7	HS (AE)
11-Aug-14	04091		2L	57	24.0	29.1	26.4	17.4	7.4	HS (AE)
11-Aug-14	04092	04093	2L	57	24.7	28.9	26.3	17.2	7.2	HS (AE), ano V5, LC4
11-Aug-14	04094		2L	57	26.3	30.4	26.8	17.3	7.7	HS (AE)
11-Aug-14	06080	06081	12R9L	57	33.0	40.0	35.1	20.2	14.5	sarah's performance hatchling, measured and released 22-
										Oct

Date	ID1	ID2	Notch ID	Nest	Plastron	Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
11-Aug-14	06097		12R9L	57	32.4	39.0	34.2	19.1	13.1	sarah's performance hatchling, measured and released 22-
_										Oct
22-Aug-14	04159	04160	1R3L	60	25.7	28.9	25.8	16.5	7.3	HS (AE); one individual from 60-1 to 60-7 died 29-Aug;
										unsure which
22-Aug-14	04161		1R3L	60	26.3	29.2	25.4	16.8	7.5	HS (AE)
22-Aug-14	04162	04163	1R3L	60	22.8	28.0	24.2	15.8	6.5	HS (AE)
22-Aug-14	04164		1R3L	60	23.6	27.9	24.7	15.4	6.5	HS (AE)
22-Aug-14	04166		1R3L	60	26.1	31.4	27.9	16.9	8.2	HS (AE)
22-Aug-14	04167	04168	1R3L	60	24.6	29.2	25.7	16.8	7.1	HS (AE)
22-Aug-14	04169	04170	1R3L	60	22.7	27.3	24.7	15.7	6.0	HS (AE)
22-Aug-14	04675	04676	12R9L	60	27.5	31.1	26.4	15.5	9.4	sarah's performance hatchling, measured and released 9- Oct
22-Aug-14	06076	06077	12R9L	60	29.4	35.1	31.3	18.2	10.3	sarah's performance hatchling, measured and released 22-
										Oct
28-Aug-14	04259	04260	12R9L	60	27.8	31.5	28.0	17.5	8.3	
11-Aug-14	04102	04103	9L	61	28.5	31.7	29.4	16.7	9.0	HS (NAIB)
11-Aug-14	04104	04105	9L	61	29.2	32.0	29.0	16.9	8.1	HS (NAIB)
11-Aug-14	04106		9L	61	27.8	32.0	29.1	16.8	8.0	HS (NAIB)
11-Aug-14				61	27.8	32.3	29.2	16.7	8.9	dead
11-Aug-14				61	28.0	32.5	29.1	15.7	8.6	dead
28-Aug-14	04228		2R9L	62	22.1	26.7	24.5	14.6	5.0	HS (AE)
28-Aug-14	04229	04230	2R9L	62	23.5	27.0	24.8	15.5	5.5	HS (AE)
28-Aug-14	04231	04232	2R9L	62	22.2	25.2	22.9	15.2	4.7	HS (AE)
2-Sep-14	04290		12R9L	63	21.5	23.1	20.2	14.3	4.0	
2-Sep-14	04291	04292	12R9L	63	24.9	26.4	23.4	14.4	5.0	
2-Sep-14	04293	04294	12R9L	63	21.1	22.0	19.1	13.8	3.9	
2-Sep-14	04295		12R9L	63	22.5	25.1	21.9	14.8	4.4	
2-Sep-14	04296	04297	12R9L	63	22.8	24.4	22.1	13.8	4.2	
1-Oct-14	05936		12R9L	64	28.1	32.1	29.0	17.2	8.3	
10-Oct-14	06049	06050	12R9L	64	26.8	32.3	28.7	17.5	7.6	
10-Oct-14	06051	06052	12R9L	64	26.5	32.0	28.3	17.2	7.8	
10-Oct-14	06053		12R9L	64	26.9	32.0	26.9	16.5	7.2	
10-Oct-14	06054	06055	12R9L	64	27.5	32.6	27.8	17.8	7.7	
10-Oct-14	06056	06057	12R9L	64	26.8	32.7	28.0	16.7	7.4	
10-Oct-14	05058		12R9L	64	26.9	30.6	26.6	16.8	7.1	
10-Oct-14	06059	06060	12R9L	64	28.7	32.6	30.3	17.6	8.1	26 marginals, Ano V4-5

Date	ID1	ID2	Notch ID	Nest	Plastron	Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
10-Oct-14	06061	06062	12R9L	64	28.0	33.1	29.1	18.0	8.2	
10-Oct-14	06063		12R9L	64	29.1	34.2	29.8	17.4	8.6	
2-Sep-14	04427		3R12L	66	26.1	29.8	27.9	16.8	7.9	HS (MES)
2-Sep-14	04428	04429	3R12L	66	24.2	28.3	25.7	16.7	7.1	HS (MES)
2-Sep-14	04430	04431	3R12L	66	25.8	29.0	27.0	15.9	7.2	HS (MES)
2-Sep-14	04432		3R12L	66	25.7	30.6	26.5	16.5	7.4	HS (MES)
2-Sep-14	04433	04434	3R12L	66	26.9	30.3	27.8	16.6	7.7	HS (MES)
12-Sep-14	05797		12R9L	66	24.8	28.7	25.8	16.6	6.7	Ano left bridge
16-Apr-15	06207		2R11L	67	27.4	32.1	28.1	16.1	7.0	
17-Apr-15	06242	06243	2R11L	67	27.8	32.7	28.2	16.4	7.3	Sarah performance
17-Apr-15	06244		2R11L	67	28.2	32.1	28.9	16.1	7.0	Sarah performance
17-Apr-15	06245	06246	2R11L	67	27.7	32.4	28.7	16.5	7.5	
17-Apr-15	06247	06248	2R11L	67	28.9	32.8	28.7	17.0	8.2	
17-Apr-15	06249		2R11L	67	27.3	31.7	27.5	16.0	7.0	
22-Apr-15	06314		2R11L	67	27.6	33.0	29.3	16.3	7.7	13 Right marginals
29-Apr-15	06428		2R11L	67	22.9	26.7	24.0	13.8	4.5	
4-May-15	06431	06432	2R11L	67	26.6	31.1	27.9	16.2	7.0	
4-May-15	06433		2R11L	67	28.6	32.4	28.8	15.7	7.3	
4-May-15	06434	06435	2R11L	67	22.8	27.2	22.6	13.2	4.2	
6-May-15	06465		2R11L	67	28.4	32.3	29.0	15.7	7.3	
6-May-15	06466	06467	2R11L	67	28.2	33.0	28.8	16.1	7.5	
18-May-15	06515		2R11L	67	25.6	29.4	26.4	15.9	6.3	
8-Sep-14	04577	04578	12R9L	68	27.3	31.9	28.0	16.3	7.6	
8-Sep-14	04579		12R9L	68	26.9	30.9	27.8	16.0	7.5	
8-Sep-14	04580	04581	12R9L	68	26.3	31.3	27.4	15.7	7.2	
8-Sep-14	04582	04583	12R9L	68	27.0	31.1	27.8	15.8	7.1	
8-Sep-14	04584		12R9L	68	27.3	31.6	28.1	16.4	7.8	
8-Sep-14	04585	04586	12R9L	68	27.3	31.6	27.3	16.7	7.5	
8-Sep-14	04587	04588	12R9L	68	26.6	31.2	27.7	16.0	7.4	
8-Sep-14	04589		12R9L	68	27.1	31.5	28.0	16.7	7.8	
8-Sep-14	04590	04591	12R9L	68	26.8	32.0	27.8	16.8	7.6	
8-Sep-14				68	25.4	28.6	26.9	15.5	6.9	dead 8-Sep in shed
8-Sep-14				68	25.9	27.8	24.7	14.9	6.6	dead 8-Sep in shed
12-Sep-14	05800	05801	12R9L	68	26.0	30.3	28.5	17.1	7.1	
18-Sep-14	05842		12R9L	68	25.9	30.5	27.7	17.0	7.0	
18-Sep-14	05843	05844	12R9L	68	25.9	30.6	28.3	16.4	7.0	

Date	ID1	ID2	Notch ID	Nest	Plastron	Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
18-Sep-14	05845	05846	12R9L	68	27.0	31.8	29.3	17.2	7.9	
2-Oct-14	05939	05940	12R9L	69	28.6	32.3	28.9	16.1	8.0	
2-Oct-14	05941		12R9L	69	27.8	31.9	29.2	17.1	8.1	
2-Oct-14	05942	05943	12R9L	69	29.2	31.4	27.3	16.3	7.8	
2-Oct-14	05944	05945	12R9L	69	28.3	31.3	28.0	16.5	8.1	
3-Oct-14	05946	05947	12R9L	69	23.6	28.1	24.1	15.0	5.2	
3-Oct-14	05948		12R9L	69	28.1	32.1	29.1	17.2	8.1	
3-Oct-14	05949	05950	12R9L	69	29.2	31.9	28.4	16.4	7.4	
3-Oct-14	05951		12R9L	69	26.1	29.1	24.8	15.3	6.2	
3-Oct-14	05952	05953	12R9L	69	27.9	31.5	27.5	16.2	7.4	
3-Oct-14	05954	05955	12R9L	69	27.4	31.9	29.0	16.7	7.7	
8-Oct-14	06027	06028	12R9L	69	30.2	34.6	30.4	17.4	9.4	
6-May-15	06468	06469	2R11L	69	27.8	31.2	28.5	16.3	7.3	
8-Aug-14	05765	05766	12R9L	70	26.4	28.6	25.8	16.9	6.9	sarah's performance hatchling, notched and released 22-
										Oct
8-Aug-14	05775	05776	12R9L	70	23.1	26.3	22.4	15.6	5.8	sarah's performance hatchling, released 22-Oct
8-Aug-14	05777		3R	70	27.3	29.7	25.2	16.9	7.0	HS (NAIB)
11-Aug-14	05778	05779	3R	70	23.5	26.0	21.9	17.0	5.9	dead 8-Sep
11-Aug-14	04096		3R	70	26.6	28.2	23.3	15.9	6.2	HS (MES)
11-Aug-14	04097	04098	3R	70	23.8	28.8	23.4	16.7	6.3	HS (MES)
25-Aug-14	04192	04193	1R10L	71	26.6	31.4	29.5	16.8	7.9	HS (AE)
26-Aug-14	04197	04198	12R1L9L	71	26.5	31.1	27.8	17.1	8.0	sarah's performance hatchling, accidental 1L notch
29-Aug-14	04261	04262	1R10L	71	25.3	30.9	28.9	16.3	7.6	HS (AE), 13 left marginals
29-Aug-14	04263		1R10L	71	27.0	31.4	29.9	16.8	8.3	HS (AE)
10-Sep-14	04635	04636	12R9L	71	27.2	30.6	26.2	16.9	7.9	
10-Sep-14	04634		12R9L	71	26.5	30.5	27.7	17.4	8.1	
22-Aug-14	04171		1R9L	72	26.9	31.8	28.9	17.4	8.3	HS (AE)
22-Aug-14	04172	04173	1R9L	72	27.9	31.7	27.9	16.9	8.0	HS (AE)
22-Aug-14	04174	04175	1R9L	72	27.2	32.3	28.4	17.4	8.9	HS (AE)
22-Aug-14	04176		1R9L	72	27.8	31.9	27.5	16.9	8.2	HS (AE)
22-Aug-14	04177	04178	1R9L	72	28.3	32.0	28.4	17.1	8.9	HS (AE)
22-Aug-14	04179	04180	1R9L	72	26.7	31.5	27.7	16.6	8.0	HS (AE)
22-Aug-14	04181		1R9L	72	27.2	31.5	28.1	16.7	8.1	HS (AE)
22-Aug-14	04182	04183	1R9L	72	27.8	32.3	27.8	17.1	8.8	HS (AE)
22-Aug-14	04184	04185	1R9L	72	26.4	31.6	26.6	16.7	7.4	HS (AE)
22-Aug-14	04186		1R9L	72	26.7	32.0	28.5	16.5	8.3	HS (NAIB)

Date	ID1	ID2	Notch ID	Nest	Plastron	Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
22-Aug-14	04187	04188	1R9L	72	27.9	32.8	28.6	17.2	8.9	HS (NAIB)
22-Aug-14	04677	04678	12R9L	72	28.0	32.5	28.2	16.7	8.1	sarah's performance hatchling, measured and released 9-
										Oct
25-Aug-14	04191		1R9L	72	25.3	30.2	27.8	16.7	7.2	HS (NAIB)
4-Sep-14	04517		12R9L	72	26.9	32.1	28.0	16.8	7.6	13 right marginals
4-Sep-14	04518	04519	12R9L	72	27.2	32.2	29.1	16.0	7.6	
4-Sep-14	04520	04521	12R9L	72	25.7	32.1	27.7	16.9	7.6	
22-Aug-14	04679		12R9L	73	29.4	35.5	31.8	18.1	11.3	sarah's performance hatchling, measured and released 9-
										Oct
28-Aug-14	04233		2R10L	73	24.8	30.4	28.6	16.3	7.1	HS (AE)
28-Aug-14	04234	04235	2R10L	73	27.7	30.9	28.4	17.0	8.0	HS (AE)
28-Aug-14	04236	04237	2R10L	73	25.1	28.9	26.7	15.3	6.0	HS (AE)
28-Aug-14	04238		2R10L	73	24.9	29.8	27.3	16.6		HS (AE)
28-Aug-14	04239	04240	2R10L	73	26.7	31.4	29.6	16.8	8.1	HS (AE)
28-Aug-14	04241	04242	2R10L	73	27.1	32.7	29.3	17.1	8.2	HS (AE)
28-Aug-14	04243		2R10L	73	26.7	31.7	30.2	16.8	8.6	HS (AE)
28-Aug-14	04244	04245	2R10L	73	27.7	32.1	28.7	17.4	8.2	HS (AE)
28-Aug-14	04246	04247	2R10L	73	27.5	31.4	27.8	16.8	8.2	HS (AE)
28-Aug-14	04248		2R10L	73	26.7	31.1	28.8	16.5	7.9	HS (AE)
28-Aug-14	04249	04250	2R10L	73	26.8	31.5	28.7	16.7	8.1	HS (AE)
28-Aug-14	04251	04252	2R10L	73	26.7	31.4	28.3	16.5	7.6	HS (AE)
28-Aug-14	04253		2R10L	73	27.8	31.7	28.6	16.5	8.0	HS (AE)
28-Aug-14	04254	04255	2R10L	73	27.7	32.4	29.2	17.1	8.0	HS (AE)
28-Aug-14	04681		2R10L	73	27.4	33.2	30.8	18.5	9.2	sarah's performance hatchling, measured and released 9-
										Oct
28-Aug-14	04682	04283	2R10L	73	26.5	31.0	27.0	16.8	7.8	sarah's performance hatchling, measured and released 9-
										Oct
2-Sep-14	04381	04382	3R10L	74	23.0	30.3	27.3	15.3	6.4	HS (MES)
2-Sep-14	04383	04384	3R10L	74	25.5	31.3	26.2	16.2	7.1	HS (MES)
2-Sep-14	04385		3R10L	74	23.2	27.4	23.2	15.7	5.0	HS (MES)
2-Sep-14	04386	04387	3R10L	74	25.7	29.7	25.8	15.6	6.5	HS (MES)
2-Sep-14	04388	04389	3R10L	74	24.3	29.0	25.9	15.1	6.1	HS (MES)
2-Sep-14	04390		3R10L	74	25.0	29.6	26.1	16.3	6.3	HS (MES)
3-Sep-14	04450	04451	12R9L	74	25.7	30.2	26.7	16.0	6.8	
6-May-15	06470		2R11L	75	27.4	32.8	29.7	16.9	9.1	
19-May-15	06525		2R11L	75	27.6	33.3	28.8	17.6	8.1	

Date	ID1	ID2	Notch ID	Nest	Plastron	Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
3-Sep-14	04470	04471	12R9L	78	25.1	29.2	25.8	14.7	6.1	
3-Sep-14	04472		12R9L	78	27.7	31.7	27.0	16.4	8.0	
3-Sep-14	04473	04474	12R9L	78	24.7	27.5	25.6	15.3	6.1	
3-Sep-14	04477		9R2L	78	27.0	30.5	26.8	17.4	6.8	HS (MES)
3-Sep-14	04478	04478	12R9L	78	26.1	30.0	27.4	15.7	6.6	
3-Sep-14	04480	04481	12R9L	78	26.2	30.1	27.4	15.4	6.8	
3-Sep-14	04482		12R9L	78	26.4	29.8	26.9	15.2	6.6	
3-Sep-14	04483	04484	12R9L	78	25.9	28.5	26.0	15.0	6.3	
3-Sep-14	04485	04486	12R9L	78	25.4	28.8	25.2	15.0	6.0	
3-Sep-14	04487		12R9L	78	27.0	30.7	28.2	15.6	7.5	
3-Sep-14	04488	04489	12R9L	78	27.9	32.1	27.4	16.2	7.7	
3-Sep-14	04490	04491	12R9L	78	25.8	29.2	26.5	15.4	6.5	
3-Sep-14	04492		12R9L	78	26.9	30.2	27.0	14.9	6.7	
3-Sep-14	04493	04494	12R9L	78	25.6	29.5	27.0	15.8	6.8	
8-Sep-14	04560		12R9L	78	25.5	29.1	27.2	15.5	5.8	
17-Apr-15	06274	06275	2R11L	80	27.7	31.3	28.8	16.0	7.3	Sarah performance
22-Apr-15	06316		2R11L	80	27.3	31.6	29.5	14.8	7.0	Sarah performance
22-Apr-15	06317	06318	2R11L	80	27.6	31.7	29.4	16.8	7.3	
22-Apr-15	06319	06320	2R11L	80	26.9	30.4	28.6	15.8	7.0	
22-Apr-15	06321		2R11L	80	26.7	30.9	28.9	16.3	7.0	
22-Apr-15	06322	06323	2R11L	80	25.7	29.6	27.0	14.9	6.3	
22-Apr-15	06324	06325	2R11L	80	26.9	30.3	28.5	16.2	6.8	11 Left marginals
22-Apr-15	06326		2R11L	80	27.9	30.7	28.1	15.9	7.0	
22-Apr-15	06327	06328	2R11L	80	26.0	30.0	28.0	16.2	6.9	13 Right marginals
22-Apr-15	06329	06330	2R11L	80	26.4	30.3	29.2	15.5	7.0	
4-May-15	06436	06437	2R11L	80	26.0	30.7	28.4	15.5	6.8	
4-May-15	06438	06439	2R11L	80	27.9	32.0	28.7	16.1	7.2	
6-May-15	06471	06472	2R11L	80	27.1	30.6	29.0	16.0	6.9	
8-May-15	06488	06489	2R11L	80	26.7	30.2	29.1	16.1	7.1	
8-May-15	06490		2R11L	80	25.5	29.9	27.2	14.8	6.0	Ano V5
8-May-15	06491	06492	2R11L	80	25.1	29.5	26.8	15.6	6.0	Ano V5 (enlarged V4, reduced V5)
11-May-15	06493	06494	2R11L	80	23.2	27.2	23.5	13.6	4.3	
11-May-15	06495		2R11L	80	26.7	30.4	29.0	15.7	7.0	Behavior less responsive than usual, floats head down
										when in water, dead on 13-May
26-Aug-14	04199	04200	1R12L	82	28.0	32.3	28.5	18.5	9.1	HS (AE)
26-Aug-14	04201		1R12L	82	24.8	28.6	24.8	16.9	7.0	HS (AE)

Date	ID1	ID2	Notch ID	Nest	Plastron	Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
26-Aug-14	04202	04203	1R12L	82	26.8	30.5	27.2	15.9	7.8	HS (AE)
26-Aug-14	04204	04205	1R12L	82	27.6	31.5	28.6	17.1	8.9	HS (AE)
26-Aug-14	04206		1R12L	82	28.0	32.9	28.6	17.7	9.0	HS (AE)
26-Aug-14	04207	04208	1R12L	82	28.0	32.6	27.8	18.0	9.4	HS (AE)
27-Aug-14	04209	04210	1R12L	82	25.0	28.7	26.1	15.6	6.6	HS (AE)
27-Aug-14	04211		1R12L	82	26.5	30.5	27.0	17.6	7.4	HS (AE)
27-Aug-14	04213		1R12L	82	24.9	28.7	26.2	16.0	6.3	HS (AE)
27-Aug-14	04214	04215	1R12L	82	27.7	32.0	29.3	17.2	9.4	HS (AE)
26-Sep-14	05910	05911	12R9L	83	21.1	24.8	22.6	14.0	4.3	
26-Sep-14	05921		12R9L	83	23.6	27.4	24.3	14.5	5.3	
26-Sep-14	05924	05925	12R9L	83	22.3	25.1	23.2	13.6	4.4	
29-Sep-14	05927	05928	12R9L	83	23.4	25.8	22.7	14.1	4.4	
18-May-15	06516	06517	2R11L	83	29.3	33.5	29.4	17.3	8.9	
8-Sep-14	04562	04563	12R9L	84	30.1	33.2	29.7	16.6	8.3	
8-Sep-14	04564		12R9L	84	27.7	31.0	29.2	15.8	7.3	
8-Sep-14	04565	04566	12R9L	84	28.6	31.7	28.8	16.7	7.9	
8-Sep-14	04567	04568	12R9L	84	28.2	32.0	29.0	16.6	7.9	
8-Sep-14	04569		12R9L	84	25.9	30.5	28.4	15.8	6.9	
8-Sep-14	04570	04571	12R9L	84	28.8	33.3	30.0	17.6	8.9	
8-Sep-14	04572	04573	12R9L	84	27.3	30.9	27.7	15.8	6.8	
8-Sep-14	04574		12R9L	84	27.7	30.3	27.4	16.4	7.1	
8-Sep-14	04575	04576	12R9L	84	28.4	32.3	28.6	16.6	8.2	
13-Apr-15	06122		2R11L	85	27.0	31.4	27.9	16.2	6.7	Sarah perf.
17-Apr-15	06257	06258	2R11L	85	27.1	32.0	28.2	15.8	6.7	Sarah performance
17-Apr-15	06259		2R11L	85	27.3	30.5	26.3	16.2	6.6	Scarring of Left 3rd costal
17-Apr-15	06260	06261	2R11L	85	27.5	31.5	28.6	16.0	7.2	
27-Aug-14	04216		2R1L	87	26.0	30.1	26.7	17.3	7.7	HS (MES)
3-Sep-14	04468	04469	12R9L	87	25.4	28.9	26.2	15.8	6.9	
2-Sep-14	04310		3R1L	88	28.1	32.2	28.3	15.7	7.5	HS (MES)
2-Sep-14	04311	04312	3R1L	88	26.4	29.8	25.9	16.2	7.3	HS (MES)
2-Sep-14	04313	04314	3R1L	88	27.4	31.4	27.9	16.2	7.6	HS (MES)
2-Sep-14	04315		3R1L	88	27.4	31.6	27.4	16.3	7.5	HS (MES)
2-Sep-14	04316	04317	3R1L	88	26.8	30.1	27.1	16.0	6.5	HS (MES)
2-Sep-14	04318	04319	3R1L	88	27.7	30.7	27.3	14.8	6.7	HS (MES)
2-Sep-14	04320		3R1L	88	27.3	31.2	27.9	16.2	7.5	HS (MES)
3-Sep-14	04505	04506	12R9L	88	27.8	31.9	27.5	16.4	8.1	

Date	ID1	ID2	Notch ID	Nest		Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
8-Sep-14	04523	04524	12R9L	88	30.2	33.6	29.6	17.5	8.7	
8-Sep-14	04525	04526	12R9L	88	28.1	32.0	28.2	16.6	7.6	
28-Aug-14	04256	04257	2R11L	90	27.3	30.5	27.6	16.5	8.2	kyophotic; given back from MES
28-Aug-14	04258		2R11L	90	26.4	30.9	28.0	16.4	7.7	kyophotic; given back from MES
8-Sep-14	04534		12R9L	90	26.2	31.0	27.7	15.9	6.8	
8-Sep-14	04535	04536	12R9L	90	27.4	30.9	27.2	16.2	7.3	
8-Sep-14	04537	////	12R9L	90	26.5	31.4	27.6	15.8	7.1	
8-Sep-14	04538	04539	12R9L	90	26.3	29.6	26.1	16.1	6.4	26 marginals
8-Sep-14	04540	04540	12R9L	90	28.0	32.5	28.1	16.3	7.5	
8-Sep-14	04542	04543	12R9L	90	26.7	30.5	27.9	15.8	7.0	13 left marginals
8-Sep-14	04544		12R9L	90	29.5	32.9	29.5	17.2	8.8	
12-Sep-14	05792		12R9L	92	29.1	32.1	28.6	17.1	8.1	
12-Sep-14	05793	05794	12R9L	92	27.8	31.1	27.6	16.0	6.7	
14-Aug-14	04116		10L	93	27.3	31.2	27.6	16.6	7.5	HS (NAIB)
14-Aug-14	04117	04118	10L	93	28.4	32.6	29.0	17.0	8.5	HS (NAIB)
14-Aug-14	04119	04120	10L	93	26.8	30.7	27.3	16.5	7.4	HS (NAIB)
14-Aug-14	04121		10L	93	25.2	30.7	27.3	16.1	7.1	HS (NAIB)
14-Aug-14	04122	04123	10L	93	28.4	30.1	27.7	16.4	8.2	HS (NAIB)
14-Aug-14	04124	04125	10L	93	25.7	31.1	27.5	16.6	7.5	HS (NAIB)
14-Aug-14	04126		10L	93	26.1	31.1	28.3	16.3	7.7	HS (NAIB)
15-Aug-14	06095		12R9L	93	30.0	35.6	30.1	18.2	10.4	sarah's performance hatchling, measured and released 22-
										Oct
8-Sep-14				94	23.4	26.1	23.4	14.5	4.6	dead in ring
8-Sep-14	04545	04546	12R9L	94	27.6	30.0	27.3	17.9	8.6	
8-Sep-14	04547		12R9L	94	26.8	31.1	28.1	17.6	8.5	
8-Sep-14	04549		12R9L	94	25.1	29.2	26.6	16.4	6.8	
8-Sep-14	04550	04551	12R9L	94	28.9	32.2	28.7	17.2	9.4	
8-Sep-14	04552	04553	12R9L	94	26.6	29.6	26.4	16.3	7.5	
8-Sep-14	04554	////	12R9L	94	25.5	30.1	26.1	15.9	7.0	
8-Sep-14	04555	04556	12R9L	94	27.9	31.1	27.0	16.4	8.5	
18-Sep-14	05850	05851	12R9L	94	28.3	32.9	29.3	17.6	9.5	
15-Apr-15	06167		2R11L	95	27.8	31.8	28.3	15.8	6.8	
17-Apr-15	06262	06263	2R11L	95	23.8	27.3	25.2	14.2	4.7	
17-Apr-15	06267	06268	2R11L	95	26.4	29.4	26.7	14.4	5.7	
17-Apr-15	06269		2R11L	95	24.3	27.3	26.1	14.2	5.2	Sarah performance
17-Apr-15	06270	06271	2R11L	95	29.6	32.7	29.3	16.4	8.0	Sarah performance

Date	ID1	ID2	Notch ID	Nest	Plastron	Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
22-Apr-15	06331		2R11L	95	28.4	31.3	28.5	16.5	7.0	22 marginals
22-Apr-15	06332	06333	2R11L	95	29.0	32.4	29.3	16.3	8.0	
22-Apr-15	06334	06335	2R11L	95	29.1	32.6	29.4	15.8	7.6	
22-Apr-15	06336		2R11L	95	28.1	31.7	28.6	15.8	7.5	
22-Apr-15	06337	06338	2R11L	95	28.7	31.8	29.7	15.6	8.3	
22-Apr-15	06339	06340	2R11L	96	28.5	32.3	27.7	16.7	8.0	Sarah performance
22-Apr-15	06341		2R11L	96	29.5	34.0	30.2	16.6	9.1	Sarah performance
22-Apr-15	06342	06343	2R11L	96	27.9	31.4	27.3	16.1	7.4	
22-Apr-15	06344		2R11L	96	28.0	31.4	28.1	17.0	7.6	
22-Apr-15	06346		2R11L	96	25.1	28.5	26.2	15.7	5.8	
22-Apr-15	06347	06348	2R11L	96	24.0	27.2	23.5	14.0	4.7	
22-Apr-15	06349	06350	2R11L	96	28.7	33.2	29.2	17.6	8.6	
22-Apr-15	06351		2R11L	96	23.2	27.6	24.6	13.3	4.7	Ano V1
22-Apr-15	06352	06353	2R11L	96	29.8	33.9	29.8	17.5	9.2	Ano V1, V5
4-May-15	06440		2R11L	96	24.4	27.2	25.1	14.3	5.0	
4-May-15	06455		2R11L	96	28.4	31.4	28.9	16.0	7.2	
4-May-15	06456	06457	2R11L	96	25.2	28.0	25.3	14.9	5.2	
11-Sep-14	04702	04703	12R9L	98	26.3	30.5	27.7	16.8	8.0	
11-Sep-14	04704	04705	12R9L	98	27.8	31.9	27.9	18.0	9.3	
11-Sep-14	05790	05791	12R9L	98	24.6	28.6	25.3	16.1	6.5	
18-Sep-14	05852		12R9L	98	24.5	28.4	25.6	16.2	6.3	
24-Sep-14	05892	05893	12R9L	98	24.0	30.1	26.6	14.9	6.7	
24-Sep-14	05894		12R9L	98	27.0	32.0	28.0	18.5	9.3	kyophotic plastron
3-Sep-14	04500	04501	12R9L	99	24.4	29.6	26.6	15.3	7.0	
3-Sep-14	04502		12R9L	99	25.4	29.5	25.5	16.1	7.5	
3-Sep-14	04503	04504	12R9L	99	25.0	29.6	24.2	15.7	6.5	
2-Sep-14	04391	04392	3R11L	102	23.1	27.7	24.3	16.0	6.4	HS (AE), Ano V3-5
2-Sep-14	04393	04394	3R11L	102	25.3	29.1	25.9	16.0	6.7	HS (AE)
2-Sep-14	04395		3R11L	102	26.1	29.3	26.7	16.4	7.3	HS (AE)
2-Sep-14	04396	04397	3R11L	102	24.4	29.5	26.5	15.8	6.9	HS (AE)
2-Sep-14	04398	04399	3R11L	102	24.5	29.2	25.6	16.1	6.7	HS (AE)
2-Sep-14	04400		3R11L	102	25.6	29.2	26.2	16.3	7.0	HS (AE)
2-Sep-14	04401	04402	3R11L	102	26.3	30.2	26.5	15.6	7.5	HS (AE)
2-Sep-14	04403	04404	3R11L	102	26.0	20.8	27.2	16.5	7.7	HS (AE)
2-Sep-14	04405		3R11L	102	25.3	29.3	26.1	16.4	7.6	HS (AE)
2-Sep-14	04407		3R11L	102	25.6	30.5	27.1	16.1	7.7	HS (AE)

Date	ID1	ID2	Notch ID	Nest	Plastron	Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
2-Sep-14	04415	04416	3R11L	102	26.2	30.1	26.2	15.4	6.4	HS (AE)
2-Sep-14	04408	04409	3R11L	102	25.7	29.4	24.5	15.6	6.4	HS (AE)
2-Sep-14	04410		3R11L	102	25.4	29.7	26.3	16.0	7.1	HS (AE)
2-Sep-14	04412		3R11L	102	25.1	30.1	26.9	16.2	7.6	HS (AE)
2-Sep-14	04413	04414	3R11L	102	25.5	29.9	26.9	16.1	7.5	HS (AE)
15-Sep-14	05825	05826	12R9L	102	24.8	28.7	27.2	15.8	6.2	
8-Oct-14	06026		12R9L	103	24.4	27.5	25.0	15.7	6.1	Ano V5
22-Apr-15	06354	06355	2R11L	105	27.7	32.0	27.1	15.6	7.1	Sarah performance
22-Apr-15	06356		2R11L	105	27.6	32.9	27.8	17.5	8.2	Sarah performance
22-Apr-15	06357	06358	2R11L	105	24.8	27.8	23.9	14.8	4.9	Ano V3-5
22-Apr-15	06359	06360	2R11L	105	28.8	34.0	28.8	16.6	8.5	
22-Apr-15	06361		2R11L	105	28.3	33.0	27.7	16.1	7.8	
22-Apr-15	06362	06363	2R11L	105	22.1	25.5	22.3	13.9	4.3	Ano V5, Abdominal, Femoral scutes
4-May-15	06458	06459	2R11L	105	29.2	33.9	28.6	16.9	8.4	
6-May-15	06478	06479	2R11L	105	29.0	33.8	28.5	16.9	8.5	
16-Oct-14	06064	06065	12R9L	108	28.2	33.3	29.0	15.4	8.4	
16-Oct-14	06066	06067	12R9L	108	27.2	32.9	28.2	16.1	8.3	
16-Oct-14	06068		12R9L	108	28.2	33.6	27.9	15.9	7.9	Ano V3-5
16-Oct-14	06070		12R9L	108	27.7	32.7	27.8	16.0	7.8	
16-Oct-14	06071	06072	12R9L	108	26.7	32.5	27.2	15.9	7.6	
16-Oct-14	06073	06074	12R9L	108	28.9	33.7	29.2	16.1	8.6	
16-Oct-14	06075		12R9L	108	27.6	33.0	28.0	16.2	7.9	
13-May-15	06503	06504	2R11L	108	28.8	34.3	28.8	17.0	8.4	Ano V5
7-Oct-14	05996		12R9L	109	27.5	31.8	28.4	17.2	8.5	
7-Oct-14	05997	05998	12R9L	109	27.1	30.6	28.1	16.2	7.8	
7-Oct-14	05999	06000	12R9L	109	28.4	32.3	28.4	16.5	8.3	
7-Oct-14	06001		12R9L	109	26.0	28.9	25.3	16.3	6.7	
7-Oct-14	06002	06003	12R9L	109	27.8	31.9	28.1	17.2	8.0	
7-Oct-14	06004	06005	12R9L	109	25.4	29.7	26.5	16.1	6.8	
7-Oct-14	06006		12R9L	109	28.0	31.9	29.2	16.5	8.2	
7-Oct-14	06007	06008	12R9L	109	28.5	32.0	28.0	16.7	8.1	
7-Oct-14	06009		12R9L	109	27.2	32.4	29.3	15.9	8.2	
7-Oct-14	06010	06011	12R9L	109	26.8	31.2	28.0	16.2	7.2	
8-Oct-14	06044	06045	12R9L	109	26.3	31.1	28.0	16.1	7.1	
8-Oct-14	06046	06047	12R9L	109	25.8	30.5	28.4	16.2	7.4	
13-Apr-15	06123	06124	2R11L	109	27.6	30.6	27.6	15.6	6.4	

Date	ID1	ID2	Notch ID	Nest	Plastron	Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
17-Apr-15	06264		2R11L	109	28.5	32.3	29.4	16.1	7.7	
22-Apr-15	06364	06365	2R11L	109	28.8	32.1	28.3	17.5	8.8	
22-Apr-15	06366		2R11L	110	26.2	29.4	26.9	15.0	6.7	Sarah performance, Ano V5
22-Apr-15	06367	06368	2R11L	110	27.8	32.3	29.3	16.6	7.9	Sarah performance
22-Apr-15	06369	06370	2R11L	110	25.6	30.3	28.3	15.4	6.8	Very small C4 on both sides
22-Apr-15	06371		2R11L	110	28.0	32.2	29.4	15.8	8.1	
22-Apr-15	06372	06373	2R11L	110	27.8	31.7	28.8	16.2	7.8	
22-Apr-15	06374	06375	2R11L	110	26.9	30.5	26.8	15.3	7.2	
22-Apr-15	06376		2R11L	110	28.1	31.7	28.4	16.1	7.6	3 Right costals, 11 Left marg
22-Apr-15	06377	06378	2R11L	110	28.6	33.0	29.4	15.9	8.2	
22-Apr-15	06379	06380	2R11L	110	28.3	32.1	27.8	15.7	7.6	
4-May-15	06441	06442	2R11L	110	28.8	32.6	29.0	16.6	8.3	
6-May-15	06486	06487	2R11L	110	29.1	32.2	28.1	15.7	7.3	
8-Oct-14	06017	06018	12R9L	114	24.9	27.3	25.0	15.3	5.6	
8-Oct-14	06019	06020	9L	114	25.4	28.7	26.2	16.4	6.5	22 marginals; only 9L notch given
8-Oct-14	06021		12R9L	114	25.7	28.8	25.6	15.6	6.0	
8-Oct-14	06022	06023	12R9L	114	25.0	28.6	26.5	15.9	6.2	abnormally long tail
8-Oct-14	06024	06025	12R9L	114	24.6	28.2	24.8	15.8	6.4	
8-Oct-14	06039	06040	12R9L	114	25.3	29.0	26.0	16.2	6.6	
8-Oct-14	06041	06042	12R9L	114	24.8	28.2	26.6	15.6	6.4	11 left marginals
8-Oct-14	06043		12R9L	114	25.2	29.5	26.0	15.8	6.5	
9-Oct-14	06048		12R9L	114	24.2	27.8	26.1	15.9	5.8	
17-Apr-15	06265	06266	2R11L	114	23.5	27.2	24.9	14.9	5.1	
11-May-15	06496	06497	2R11L	114	27.1	31.8	27.2	15.6	6.4	
11-May-15	06498	06499	2R11L	114	29.3	33.5	30.9	16.1	8.2	
13-May-15	06505		2R11L	114	27.7	31.5	28.5	15.4	6.3	
13-May-15	06506	06507	2R11L	114	23.9	28.6	25.8	15.8	6.0	
18-May-15	06518	06519	2R11L	114	26.3	29.6	27.2	15.4	6.5	
21-May-15	06533	06534	2R11L	114	28.3	32.7	29.6	17.1	8.6	
8-Sep-14	04527		12R9L	117	28.7	32.7	28.6	17.5	8.7	
8-Sep-14	04529		12R9L	117	27.6	33.5	28.5	16.6	8.7	
8-Sep-14	04530	04531	12R9L	117	28.9	33.4	29.4	17.2	9.2	
8-Sep-14	04532		12R9L	117	25.4	30.3	26.1	15.5	6.8	
17-Sep-14	05835	05836	12R9L	117	27.2	32.3	29.6	16.8	8.4	
17-Sep-14	05837		12R9L	117	27.2	32.0	28.7	16.3	7.6	
18-Sep-14	05838	05839	12R9L	117	25.3	30.3	27.6	16.0	7.4	

Date	ID1	ID2	Notch ID	Nest	Plastron	Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
18-Sep-14	05840	05841	12R9L	117	26.0	30.4	27.0	15.0	6.5	
24-Sep-14				117	26.8	29.9	27.1	16.2	8.2	dead in ring
24-Sep-14	05887	05888	12R9L	117	26.1	32.0	27.4	16.1	7.1	
24-Sep-14	05889		12R9L	117	28.2	33.3	30.0	16.7	8.3	
24-Sep-14	05890	05891	12R9L	117	26.1	31.7	28.4	16.4	7.2	
9-Sep-14	04637	04638	12R9L	118	24.8	30.6	26.0	16.0	6.9	
9-Sep-14	04639		12R9L	118	26.0	30.2	25.7	15.8	7.1	
9-Sep-14	04640	04641	12R9L	118	28.3	33.3	28.4	17.6	9.4	
9-Sep-14	04642	04643	12R9L	118	28.4	33.1	29.5	17.1	9.7	13 right marginals
9-Sep-14	04644		12R9L	118	28.8	33.9	29.1	17.6	9.8	
9-Sep-14	04645	04646	12R9L	118	29.4	34.2	29.4	17.0	9.3	
9-Sep-14	04647	04648	12R9L	118	26.3	31.8	27.7	16.3	7.8	
9-Sep-14	04649		12R9L	118	26.1	29.9	25.9	15.9	6.9	
9-Sep-14	04651		12R9L	118	28.6	32.7	28.4	16.5	8.6	
9-Sep-14	04652	04653	9R9L	118	28.6	32.3	27.9	17.2	9.1	HS (MES)
3-Sep-14	04507		12R9L	119	26.3	31.2	27.8	17.6	8.2	
3-Sep-14	04508	04509	12R9L	119	24.9	29.5	25.0	17.5	7.1	Ano V3-5, 26 marginals
3-Sep-14	04510	04511	12R9L	119	22.6	27.8	24.8	15.7	5.8	Ano V4-5, 26 marginals
3-Sep-14	04512		12R9L	119	26.2	29.4	25.9	17.2	6.8	Ano V3-5, 26 marginals
3-Sep-14	04514		12R9L	119	23.7	27.4	23.9	15.7	5.6	
3-Sep-14	04515	04516	12R9L	119	26.6	30.4	27.8	18.6	7.9	13 right marginals
3-Sep-14				119	25.1	29.8	26.2	16.8	8.0	dead 4-Sep
3-Sep-14	04457		12R9L	125	29.1	32.1	27.7	17.5	8.5	
3-Sep-14	04458	04459	12R9L	125	26.4	30.7	26.6	16.7	7.9	
3-Sep-14	04460	04461	12R9L	125	28.5	30.9	27.6	16.6	8.2	
15-Sep-14	05820	05821	12R9L	125	28.8	31.7	29.6	16.9	8.4	
15-Sep-14	05822		12R9L	125	28.5	32.3	29.3	17.0	8.5	
15-Sep-14	05823	05824	12R9L	125	26.6	31.9	29.1	17.1	8.3	
10-Sep-14	04660	04661	12R9L	126	26.3	29.6	25.3	16.5	6.8	
10-Sep-14	04662	04663	12R9L	126	27.0	31.2	27.0	17.0	7.7	
10-Sep-14	04664		12R9L	126	28.1	32.9	28.4	17.2	8.4	
11-Sep-14	04696		12R9L	126	26.9	31.0	27.5	17.1	7.6	
11-Sep-14	04697	04698	12R9L	126	26.1	30.8	27.1	16.7	7.0	
11-Sep-14	04699	04700	12R9L	126	25.9	30.4	26.5	16.2	6.9	
11-Sep-14	04701		12R9L	126	27.8	31.6	27.3	16.7	7.7	
19-Sep-14	05865	05866	12R9L	126	26.7	31.4	27.8	17.2	8.0	

Date	ID1	ID2	Notch ID	Nest	Plastron	Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
11-May-15	06500		2R11L	127	26.0	31.3	28.1	17.1	8.4	
13-May-15	06508	06509	2R11L	127	24.6	28.3	25.1	16.3	6.0	
15-May-15	06511	06512	2R11L	127	26.7	30.1	26.3	16.3	7.3	Dead on18-May
15-May-15	06513	06514	2R11L	127	26.1	30.3	26.0	16.4	7.1	Ano left C4
22-May-15	06536	06537	2R11L	127	24.7	29.4	25.6	15.4	6.1	
22-May-15	06538	06539	2R11L	127	26.7	30.0	27.4	15.7	6.9	
22-May-15	06540	06541	2R11L	127	26.2	28.9	25.8	15.5	6.2	
2-Sep-14	04438	04439	12R9L	130	25.9	29.5	25.0	15.7	5.9	Ano V4-5
2-Sep-14	04440	04441	12R9L	130	27.3	30.9	26.4	17.0	7.7	
2-Sep-14	04442		12R9L	130	27.4	31.8	27.4	17.4	8.5	
2-Sep-14	04443	04444	12R9L	130	27.1	30.5	26.3	16.4	6.9	
8-Sep-14	04557	04558	12R9L	130	26.3	28.9	25.1	16.9	6.4	
8-Sep-14	04559	////	12R9L	130	25.9	29.3	24.9	16.2	6.4	
11-Sep-14	04687	04688	12R9L	131	24.5	28.1	25.5	16.1	6.7	
11-Sep-14	04689		12R9L	131	24.4	29.0	25.3	16.3	6.4	
11-Sep-14	04691		12R9L	131	26.0	29.5	25.5	16.5	6.2	
11-Sep-14	04692	04693	12R9L	131	25.8	29.8	29.9	16.0	6.5	
11-Sep-14	04694		12R9L	131	24.9	29.5	25.6	15.7	6.4	
12-Sep-14	05795	05796	12R9L	131	24.5	27.8	24.8	16.4	6.0	
8-Sep-14	04592	04593	12R9L	132	21.7	26.7	23.9	14.3	4.6	
8-Sep-14	04594		12R9L	132	25.8	30.6	26.4	17.0	7.2	
8-Sep-14	04595	04596	12R9L	132	23.6	28.4	25.8	15.0	5.5	
8-Sep-14	04597	04598	12R9L	132	24.3	29.1	25.9	15.4	5.8	
8-Sep-14	04599		12R9L	132	23.3	28.6	24.9	15.4	5.2	
8-Sep-14	04600	04601	12R9L	132	25.8	30.8	26.9	16.3	6.8	
8-Sep-14	04602	04603	12R9L	132	25.8	30.3	26.8	15.8	6.2	
8-Sep-14	04604		12R9L	132	21.7	27.1	23.8	14.0	4.3	
8-Sep-14	04605	04606	12R9L	132	25.6	30.1	26.9	16.3	6.5	
8-Sep-14	04607	04608	12R9L	132	23.6	29.0	25.9	14.4	5.3	
8-Sep-14	04609			132	25.7	31.5	27.0	15.8	6.4	
8-Sep-14				132	25.5	30.3	27.3	16.1	7.2	dead in ring
8-Sep-14	04612	04613	12R9L	132	26.7	31.3	27.9	16.4	8.0	
10-Sep-14	04655	04656	12R9L	132	24.2	29.4	25.8	15.3	5.6	
12-Sep-14	05803	05804	12R9L	132	24.3	29.5	26.0	15.6	5.5	
12-Sep-14	05805	05806	12R9L	132	24.2	29.7	26.0	15.2	4.9	
12-Sep-14	05802		12R9L	133	25.7	28.6	26.1	16.9	6.0	

Date	ID1	ID2	Notch ID	Nest		Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
15-Sep-14	05812		12R9L	133	27.8	31.1	27.1	18.1	8.5	
16-Sep-14	05828	05829	12R9L	133	28.5	31.3	27.8	18.3	8.4	
16-Sep-14	05830	05831	12R9L	133	27.8	30.4	26.7	16.6	7.2	
16-Sep-14	05832		12R9L	133	28.2	30.9	26.7	16.8	8.3	
16-Sep-14	05833	05834	12R9L	133	26.3	30.5	27.2	17.1	7.3	
18-Sep-14	05847		12R9L	133	27.7	30.8	27.1	16.4	7.4	
18-Sep-14	05848	05849	12R9L	133	26.1	29.9	27.5	16.1	7.0	
19-Sep-14	05864		12R9L	133	26.2	30.1	27.7	16.4	6.8	
6-May-15	06481	06482	2R11L	135	24.1	28.8	25.9	14.8	5.6	Ano V4, V5
15-Apr-15	06168	06169	2R11L	136	26.0	30.2	26.7	16.6	6.6	Sarah performance
15-Apr-15	06170	06171	2R11L	136	28.6	31.5	27.1	16.2	7.0	Sarah performance
17-Apr-15	06276		2R11L	136	23.3	27.4	23.7	14.0	4.6	
22-Apr-15	06393		2R11L	136	28.7	32.7	29.2	16.5	7.8	
22-Apr-15	06394	06395	2R11L	136	25.5	30.2	26.8	15.4	6.4	
22-Apr-15	06396	06397	2R11L	136	26.1	30.9	27.5	16.3	7.2	
22-Apr-15	06398		2R11L	136	27.0	30.2	26.5	15.9	7.0	
22-Apr-15	06399	06400	2R11L	136	28.0	32.0	28.5	16.4	7.6	
22-Apr-15	06401	06402	2R11L	136	25.3	29.0	25.8	15.7	6.1	Ano V1, 11 Left marginals
22-Apr-15	06403		2R11L	136	25.4	29.0	26.5	15.2	5.9	
22-Apr-15	06404	06405	2R11L	136	27.1	31.3	27.4	15.8	6.9	
22-Apr-15	06406	06407	2R11L	136	28.4	31.5	27.3	16.7	7.4	
22-Apr-15	06408		2R11L	136	27.9	31.6	28.3	15.6	7.2	
22-Apr-15	06409	06410	2R11L	136	28.2	32.6	28.6	16.5	7.8	
4-May-15	06445		2R11L	136	23.3	26.7	24.3	13.6	4.5	
4-May-15	06446	06447	2R11L	136	23.5	28.7	26.2	15.4	5.5	
6-May-15	06483	06484	2R11L	136	25.5	30.4	27.5	15.0	6.3	
20-May-15	06528	06529	2R11L	136	28.5	33.5	29.0	16.7	7.9	
20-May-15	06530		2R11L	136	21.1	25.2	23.8	13.9	4.3	
20-May-15	06531	06532	2R11L	136	27.6	31.2	28.1	15.1	7.3	
8-Aug-14	05763	05764	1R12R9L	137	25.0	29.0	26.8	15.8	6.9	sarah's performance hatchling, accidental 1R notch,
										released 22-Oct
29-Aug-14	04268		2R12L	138	25.8	30.7	26.9	16.2	6.8	HS (AE)
29-Aug-14	04270		2R12L	138	25.4	30.3	28.0	15.9	7.0	HS (AE)
29-Aug-14	04271	04272	2R12L	138	26.6	31.5	27.9	16.5	7.2	HS (AE)
29-Aug-14	04273	04274	2R12L	138	25.8	30.5	27.7	16.0	7.2	HS (AE)
29-Aug-14	04275		2R12L	138	27.3	30.9	26.9	16.0	7.2	HS (AE)

Date	ID1	ID2	Notch ID	Nest	Plastron	Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
29-Aug-14	04276	04277	2R12L	138	27.0	31.1	28.5	15.5	7.6	HS (AE)
29-Aug-14	04278	04279	2R12L	138	24.3	29.3	27.1	15.7	5.9	HS (AE)
29-Aug-14	04280		2R12L	138	24.9	30.2	27.9	15.7	6.5	HS (AE)
29-Aug-14	04281	04282	2R12L	138	25.9	30.2	27.1	15.2	6.2	HS (AE)
29-Aug-14	04283	04284	2R12L	138	26.6	31.2	28.0	17.2	6.6	HS (AE)
29-Aug-14	04285		2R12L	138	25.6	30.7	28.4	16.3	6.8	HS (AE)
29-Aug-14	04286	04287	2R12L	138	25.2	30.0	26.9	15.3	5.7	HS (AE)
29-Aug-14	04288	04289	2R12L	138	24.7	29.4	25.9	15.2	5.7	HS (AE)
17-Apr-15	06250	06251	2R11L	139	23.9	27.4	24.6	14.7	4.5	
22-Apr-15	06411	06412	2R11L	139	28.1	31.1	28.0	16.0	7.3	Sarah performance
22-Apr-15	06413		2R11L	139	27.4	31.2	28.0	16.5	7.0	Sarah performance
22-Apr-15	06414	06415	2R11L	139	23.5	27.5	23.9	14.6	4.8	
22-Apr-15	06416	06417	2R11L	139	24.6	28.9	26.3	14.4	5.8	
27-Apr-15	06421	06422	2R11L	139	26.1	28.8	26.3	15.2	5.6	
27-Apr-15	06423		2R11L	139	25.7	29.4	26.4	15.4	5.8	
27-Apr-15	06424	06425	2R11L	139	24.6	27.6	24.7	14.7	5.0	
4-May-15	06448		2R11L	139	24.7	28.5	26.0	14.5	5.3	
4-May-15	06450		2R11L	139	23.6	27.1	24.8	13.6	4.7	
4-May-15	06451	06452	2R11L	139	26.0	29.2	25.9	15.1	5.6	
4-May-15	06453	06454	2R11L	139	26.4	30.4	27.8	15.2	6.6	
8-Oct-14	06014	06015	12R9L	140	24.5	29.0	26.5	15.8	6.2	
8-Oct-14	06029	06030	12R9L	140	24.7	39.5	26.8	16.3	6.7	
8-Oct-14	06031	06032	12R9L	140	24.3	29.5	26.1	15.0	6.3	
8-Oct-14	06033		12R9L	140	24.1	30.7	27.7	16.6	7.0	26 marginals
8-Oct-14	06034	06035	12R9L	140	25.3	30.8	27.7	16.5	7.3	
8-Oct-14	06036		12R9L	140	23.3	29.7	26.6	15.4	6.3	
8-Oct-14	06037	06038	12R9L	140	25.4	30.6	28.0	16.6	7.3	
29-Sep-14	05926		12R9L	141	27.5	32.3	27.9	16.1	8.1	
29-Sep-14	05929	05930	12R9L	141	23.8	28.3	25.1	14.1	5.3	
1-Oct-14	05932	05933	12R9L	141	23.8	29.2	25.5	16.2	6.8	
1-Oct-14	05934	05935	12R9L	141	26.5	31.4	28.3	16.6	7.9	
3-Oct-14	05956		12R9L	141	27.2	32.0	28.7	16.6	7.9	
3-Oct-14	05957	05958	12R9L	141	27.9	32.5	28.0	16.5	8.2	
24-Sep-14	05867	05868	12R9L	143	26.2	31.2	27.2	16.3	8.2	
24-Sep-14	05869		12R9L	143	22.8	28.5	24.7	14.9	6.1	
24-Sep-14	05870	05871	12R9L	143	23.0	28.7	25.3	14.9	6.1	

Date	ID1	ID2	Notch ID	Nest	Plastron	Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
24-Sep-14	05872	05873	12R9L	143	22.0	27.4	24.5	15.2	5.5	
24-Sep-14	05874		12R9L	143	27.7	32.6	28.5	17.7	9.0	
24-Sep-14	05875	05876	12R9L	143	25.3	30.9	25.9	15.7	6.9	
24-Sep-14	05877	05878	12R9L	143	27.4	31.6	26.9	16.6	7.7	
24-Sep-14	05879		12R9L	143	27.0	31.9	27.0	16.8	8.0	
24-Sep-14	05880	05881	12R9L	143	24.6	30.2	25.7	16.0	6.5	
24-Sep-14	05882	05883	12R9L	143	27.4	33.1	27.8	17.3	8.6	
24-Sep-14	05884		12R9L	143	25.8	31.1	26.9	16.1	7.3	
24-Sep-14	05885	05586	12R9L	143	25.9	31.2	27.0	16.5	7.8	
3-Oct-14	05959	05960	12R9L	146	25.5	29.7	26.0	15.9	6.8	
3-Oct-14	05961		12R9L	146	26.7	31.3	27.2	17.1	7.9	
3-Oct-14	05962	05963	12R9L	146	27.8	32.3	28.0	16.6	8.7	
3-Oct-14	05964	05965	12R9L	146	28.2	31.9	27.7	16.1	8.3	
3-Oct-14	05966	05967	12R9L	146	26.4	31.0	26.8	15.0	8.0	absorbed yolk sac, measured and released 13-Oct
3-Oct-14	05968		12R9L	146	27.5	30.8	26.4	17.2	7.8	absorbed yolk sac, measured and released 13-Oct
3-Oct-14	05969	05970	12R9L	146	27.5	30.3	25.8	16.4	7.6	absorbed yolk sac, measured and released 17-Oct
3-Oct-14	05971		12R9L	146	28.3	31.3	26.8	15.3	7.2	absorbed yolk sac, measured and released 13-Oct
23-Oct-14	06102	06103	12R9L	147	23.7	27.0	24.5	15.2	5.4	
23-Oct-14	06103	06104	12R9L	147	23.4	28.2	25.5	16.5	5.9	
23-Oct-14	06105		12R9L	147	24.1	28.6	26.1	15.9	5.9	
23-Oct-14	06107		12R9L	147	24.7	27.0	25.5	15.2	5.2	
23-Oct-14	06108	06109	12R9L	147	23.2	27.1	25.1	15.4	5.3	
23-Oct-14	06110		12R9L	147	23.5	26.2	24.1	14.7	5.1	
23-Oct-14	06112		12R9L	147	24.4	28.4	26.0	15.7	5.9	
23-Oct-14	06113	06114	12R9L	147	25.2	28.8	25.7	15.7	6.1	
13-Apr-15	06127		2R11L	147	24.5	28.0	24.4	14.7	5.3	
22-Apr-15	06418		2R11L	147	25.2	30.0	25.8	15.2	5.7	
22-Apr-15	06419	06420	2R11L	147	24.3	27.9	25.7	14.6	5.4	
27-Apr-15	06426	06427	2R11L	147	24.6	28.1	25.0	15.2	5.7	
6-May-15	06485		2R11L	147	24.4	27.6	25.1	14.7	5.4	
26-Aug-14	04194	04195	1R11L	152	24.3	29.8	24.8	16.6	7.2	HS (AE)
26-Aug-14	04196		1R11L	152	25.4	29.1	26.4	16.1	7.9	HS (AE)
2-Sep-14	04300		12R9L	153	27.2	32.5	29.7	16.4	8.1	
2-Sep-14	04301	04302	12R9L	154	28.5	31.9	28.0	16.5	7.8	
3-Sep-14	04498	04499	12R9L	156	22.7	27.2	24.7	15.2	5.5	
4-Aug-14	05717		12R9L	2/28	27.1	30.0	25.7	16.4	6.9	

Date	ID1	ID2	Notch ID	Nest	Plastron	Carapace	Width	Height	Mass	COMMENTS
2 3.33				Number	Length	Length				
4-Aug-14	05718	05719	12R9L	2/28	27.3	30.0	26.2	15.7	6.9	
4-Aug-14	05720	05721	12R9L	2/28	25.4	28.5	25.1	15.6	6.0	
4-Aug-14	05723	05724	12R9L	2/28	27.1	30.1	26.9	16.6	7.2	
4-Aug-14	05725	05726	12R9L	2/28	26.3	30.1	26.3	15.8	6.7	
4-Aug-14	05727		12R9L	2/28	24.5	28.2	25.0	16.0	6.5	
4-Aug-14	05728	05729	12R9L	2/28	26.5	29.1	25.7	16.2	6.5	
4-Aug-14	05730	05731	12R9L	2/28	27.8	30.8	26.8	16.0	7.1	
4-Aug-14	05732		12R9L	2/28	25.7	29.6	26.4	16.1	6.9	
4-Aug-14	05733	05734	12R9L	2/28	27.0	29.5	26.8	15.6	6.8	
4-Aug-14	05735	05736	12R9L	2/28	25.9	28.9	26.4	16.7	7.0	
4-Aug-14	05737		12R9L	2/28	26.5	29.5	26.4	15.8	6.8	
4-Aug-14	05738	05739	12R9L	2/28	24.6	28.3	25.0	15.7	6.1	
4-Aug-14	05740	05741	12R9L	2/28	27.0	30.3	26.5	16.3	7.1	
4-Aug-14	05742		12R9L	2/28	25.9	29.5	27.0	16.1	7.1	
4-Aug-14	05745	05746	12R9L	2/28	25.5	29.3	25.4	16.5	6.4	
6-May-15	06473	06474	2R11L	100/101	25.2	27.5	24.2	14.3	5.0	
6-May-15	06475		2R11L	100/101	24.6	28.1	25.2	15.3	5.9	
6-May-15	06476	06477	2R11L	100/101	27.0	29.6	26.4	15.6	5.9	
8-Sep-14	04614		12R9L	106/107	29.4	32.3	27.7	16.8	8.0	
8-Sep-14	04615	04616	12R9L	106/107	28.4	32.4	28.7	16.9	8.1	
8-Sep-14	04617	04618	12R9L	106/107	27.2	31.3	28.3	16.2	7.6	
8-Sep-14	04619		12R9L	106/107	27.1	31.5	27.5	17.0	7.4	
8-Sep-14	04620	04621	12R9L	106/107	28.7	33.0	28.4	17.4	8.5	
8-Sep-14	04627	04628	12R9L	106/107	28.8	32.7	28.6	16.9	8.6	
8-Sep-14	04629		12R9L	106/107	29.0	32.3	29.1	16.6	7.9	
8-Sep-14	04630	04631	12R9L	106/107	28.1	32.6	29.4	16.8	8.3	
10-Sep-14	04657	14658	12R9L	106/107	28.3	31.8	28.3	17.0	7.7	
10-Sep-14	04659		12R9L	106/107	28.0	33.2	29.7	17.0	8.2	
12-Sep-14	05798	05799	12R9L	106/107	27.0	31.2	28.1	17.4	7.2	
19-Sep-14	05855	05856	12R9L	106/107	28.5	31.7	28.5	16.9	7.5	
19-Sep-14	05857	05858	12R9L	106/107	23.2	28.5	25.7	15.4	5.5	
19-Sep-14	05859		12R9L	106/107	28.2	33.2	30.5	18.3	9.0	
19-Sep-14	05860	05861	12R9L	106/107	28.2	33.1	30.0	18.3	8.8	
19-Sep-14	05862	05863	12R9L	106/107	27.6	28.8	28.7	16.6	7.1	
22-Apr-15	06381		2R11L	128/129	26.6	31.0	28.8	15.9	7.5	
22-Apr-15	06382	06383	2R11L	128/129	26.2	30.0	28.2	16.7	7.2	

Terrapin Report - Appendix 2 62

Date	ID1	ID2	Notch ID	Nest	Plastron	Carapace	Width	Height	Mass	COMMENTS
				Number	Length	Length				
22-Apr-15	06383	06384	2R11L	128/129	27.0	30.8	28.5	16.8	7.4	
22-Apr-15	06386		2R11L	128/129	27.2	30.1	27.9	16.2	7.1	
22-Apr-15	06388		2R11L	128/129	26.5	30.4	27.8	16.6	7.6	
22-Apr-15	06389	06390	2R11L	128/129	26.8	30.0	27.6	16.0	7.0	
22-Apr-15	06391		2R11L	128/129	25.5	30.4	28.5	16.5	7.5	
4-May-15	06443	06444	2R11L	128/129	26.3	30.1	27.9	16.8	7.2	
4-May-15	06460		2R11L	128/129	26.0	29.2	27.8	16.4	6.8	
6-May-15	06480		2R11L	128/129	24.8	29.2	27.1	15.5	6.1	
29-Aug-14	04303	04304	12R9L	unknown 1	26.8	31.2	28.0	17.4	8.1	
4-Sep-14				unknown 2	23.2	25.0	22.5	14.0	5.1	hand caught N 38.76089 W 76.38006, dead
8-Oct-14	06012	06013	12R9L	unknown 3	29.3	33.5	30.2	16.6	8.8	found near fence on notch N38.75282 W76.37434
31-Jul-14					27.0	29.7	25.6	15.5	7.4	found dead N38.76071 W76.37997
6-May-15						30.1	26.5			Dead, found in Cell 5 outside nest 112, carapace intact, all else eaten- ants?
13-May-15	06510		2R11L		24.8	28.9	25.1	14.7	5.1	Found 4 meters south of nest 139 in notch, in open sand, eyes won't open, dead on 15-May
15-May-15										Dead, found in cell 5 outside nest 112, eaten (ants?), too mishapen to measure
19-May-15	06526	06527	2R11L		26.2	30.5	26.5	15.4	6.4	Found near fence in notch

Date	PIT ID	Notch ID	Sex	Plastron Length	Carapace Length	Shell Width	Shell Height	Mass	DOB	Comments
20-Apr-15	0A13687353	3R11L	J	85	98	81	42	152	2014	Shipley's Choice- Web (Pit in left leg, abrasion on hind right leg)
20-Apr-15	0A13687356	2R10L	J	59	70	56	31	58	2014	Chesapeake High School- Ryan
20-Apr-15	0A1368735C	12L	J	85	97	85	41	173	2014	Lindale- Mauro
20-Apr-15	0A1368735D	10R	J	55	64	50	28	50	2014	Freetown Elementary School- Haney
20-Apr-15	0A1368735F	2R12L	J	55	64	52	29	49	2014	Chesapeake High School- Ryan (Abrasions hind feet)
20-Apr-15	0A13687362	3R11L	М	78	94	79	40	150	2014	South River High School- Martin (Healed abrasions, hind right foot)
20-Apr-15	0A13687364	2R3L	J	82	97	79	42	141	2014	Mead Heights- Gioia
20-Apr-15	0A13687365	3R2L	J	73	86	70	36	108	2014	West Annapolis Elementary School- Burrows
20-Apr-15	0A13687366	1R3L	J	79	92	77	39	136	2014	Green School of Baltimore- Clokey
20-Apr-15	0A13687367	1R1L	J	75	89	72	38	115	2014	Severn River Middle School- Hudson
20-Apr-15	0A13687368	2R9L	J	50	63	49	29	41	2014	Marley Middle School- Jones
20-Apr-15	0A1368736B	2R12L	J	73	86	73	36	105	2014	Crofton Woods- Brown (Multiple bite wounds)
20-Apr-15	0A1368736D	9R1L	J	56	68	55	31	61	2014	Belvedere Middle School- Sabat (ANOM V5 and 26
20-Apr-15	0A1368736F	2L	J	79	90	74	39	126	2014	Jessup Middle School- Anderson
20-Apr-15	0A13687373	1R3L	J	50	58	48	26	41	2014	Arlington Echo (Stubby tail)
20-Apr-15	0A13687378	2L	J	69	82	64	35	100	2014	West Annapolis Elementary School- Burrows
20-Apr-15	0A1368737A	1R9L	J	60	71	56	32	57	2014	Tracys Elementary School- Robins
20-Apr-15	0A1368737C	1R9L	J	72	85	70	37	112	2014	Chesapeake Bay Middle School- Maxwell
20-Apr-15	0A1368737D	3R2L	J	77	91	75	38	125	2014	Corkran Middle School- Klinedinst
20-Apr-15	0A13687401	12L	J	51	61	51	27	41	2014	Arlington Echo
20-Apr-15	0A13687402	3R9L	J	63	76	60	32	82	2014	Richard Henry Lee Elementary School- Senchak
20-Apr-15	0A13687404	3R2L	J	86	98	78	40	160	2014	Crofton Woods- Brown
20-Apr-15	0A13687406	1R9L	F	96	113	91	47	231	2014	Bodkin- Rush
20-Apr-15	0A13687409	3R2L	F	104	118	94	46	260	2014	South River High School- Martin
21-Apr-15	0A1368740B	2R12R9L	J	85	97	81	41	167	2014	Green School of Baltimore- Clokey
21-Apr-15	0A1368740D	3R11L	М	91	106	88	42	208	2014	Woodside Elementary- Kirkendall
21-Apr-15	0A13687410	2R9L	J	51	58	48	28	42	2014	North County- Clardy (Damaged 1 and 2 L)
21-Apr-15	0A13687412	1R9L	J	77	93	76	38	127	2014	Severn River Middle School- Hudson (ANOM V5)
21-Apr-15	0A13687414	2R12R9L	J	77	86	70	38	114	2014	Jessup Middle School- Anderson (ANOM V5 and 13L
21-Apr-15	0A13687417	3R3L	J	66	75	64	33	79	2014	Monarch Global
21-Apr-15	0A1368741B	3R2L	J	59	70	58	31	68	2014	Freetown Elementary School- Haney
21-Apr-15	0A1368741C	3R11L	J	65	75	62	32	76	2014	Seven Oaks- Linch
21-Apr-15	0A1368741F	12L	J	57	69	57	31	58	2014	Tracys Elementary School- Robins
21-Apr-15	0A13687420	3R3L	M	88	105	88	44	203	2014	Bodkin Elementary School- Rush (Inflamation on cloaca)
21-Apr-15	0A13687421	2R12L	J	58	72	57	30	59	2014	Arlington Echo
21-Apr-15	0A13687422	2R12L	J	49	60	49	27	39	2014	North County- Clardy
21-Apr-15	0A13687423	1R10L	J	64	76	64	34	87	2014	Richard Henry Lee Elementary School- Senchak (13L

Date	PIT ID	Notch ID	Sex	Plastron Length	Carapace Length	Shell Width	Shell Height	Mass	DOB	Comments
21-Apr-15	0A13687425	1R12R9L	F	93	108	89	47	239	2014	Bodkin- Duffy
21-Apr-15	0A13687426	1R12L	J	84	94	76	41	145	2014	Ridgeway- Brown
21-Apr-15	0A1368742B	1R1L	J	56	65	50	29	47	2014	Belvedere Middle School- Sabat
21-Apr-15	0A1368742D	3R3L	M	81	97	80	40	165	2014	Chesapeake Bay Middle School- Maxwell
21-Apr-15	0A1368742E	3R9L	J	73	87	69	35	107	2014	Mead Heights- Gioia (ANOM V5)
21-Apr-15	0A13687430	1R12L	F	84	96	77	39	145	2014	Bodkin- Duffy
21-Apr-15	0A13687431	1R9L	J	57	69	53	29	57	2014	Monarch Global- Medeiros (ANOM V5)
21-Apr-15	0A13687433	3R11L	M	89	109	87	43	207	2014	Severn River- Greenlee
21-Apr-15	0A13687434	2R12L	J	52	62	51	27	42	2014	Arlington Echo
21-Apr-15	0A13687435	3R9L	J	68	79	64	34	86	2014	Ridgeway- Brown (Healed abrasion right hind foot)
20-Apr-15	0A140A551B	3L	J	75	89	73	36	114	2014	St. Leonard Elementary
20-Apr-15	0A181B234C	3R 12R 9L	F	88	99	84	42	190	2014	Marriots Ridge
20-Apr-15	0A181B234D	11R	J	63	72	58	32	70	2014	Patuxent Appeal Campus
20-Apr-15	0A181B2350	10L	J	67	81	64	35	89	2014	The Kent School
20-Apr-15	0A181B2352	2R	J	74	88	72	37	111	2014	Pointersrun Elementary
20-Apr-15	0A181B2356	12R	J	75	85	75	36	107	2014	Severn School
20-Apr-15	0A181B2358	1L	F	98	113	91	47	237	2014	Barclay Elementary
20-Apr-15	0A181B2359	11L	J	71	84	67	36	102	2014	Franklin Middle School
20-Apr-15	0A181B235C	1L	J	70	83	65	34	85	2014	City Neighbors Charter
20-Apr-15	0A181B2368	3L	F	87	104	82	40	158	2014	Barstow Elementary
20-Apr-15	0A181B236A	12R	J	74	85	69	35	105	2014	Conococheague Elementary School
20-Apr-15	0A181B2370	10L	J	67	82	64	34	90	2014	Saint Andrews
20-Apr-15	0A181B2372	12R	F	87	99	81	43	159	2014	BroadNeck E.S
20-Apr-15	0A181B2375	11R	F	95	114	92	45	250	2014	Glenelg High School
20-Apr-15	0A181B2376	9R	J	70	82	65	34	88	2014	Calvert Elementary
20-Apr-15	0A181B237A	11R	F	86	100	80	41	175	2014	Beach Elementary
20-Apr-15	0A181B2400	1R 9L	J	69	82	64	37	93	2014	N. Bethesda Middle School
20-Apr-15	0A181B2402	12R	J	64	75	62	33	75	2014	Sudbrook Magnet Middle
20-Apr-15	0A181B240A	10L	J	68	82	66	37	97	2014	Kent County High School
20-Apr-15	0A181B240B	1L	J	68	83	68	35	96	2014	Washington Middle
20-Apr-15	0A181B2410	11R	J	87	102	84	41	169	2014	Plumpoint
20-Apr-15	0A181B2412	1L	J	83	96	76	39	131	2014	City Springs
20-Apr-15	0A181B2413	11R	J	65	75	60	34	75	2014	Northern High School
20-Apr-15	0A181B2417	1R 9L	J	70	83	66	36	94	2014	Wild Lake Middle School
20-Apr-15	0A181B241F	11R	J	77	92	74	39	139	2014	Pine Grove Middle
20-Apr-15	0A181B242F	1L	F	92	110	88	42	191	2014	Montgomery Blair
20-Apr-15	0A181B2825	3R12L	J	42	50	43	24	26	2014	Easton Elementary School- Johnson
20-Apr-15	0A181B282A	3R	J	83	96	82	41	148	2014	Poplar Island- DiFatta
20-Apr-15	0A181B282C	3R1L	J	62	72	62	36	79	2014	Tilghman Elementary School- Ashmussen
20-Apr-15	0A181B282D	3R10L	J	59	73	60	31	66	2014	MES Headquarters

_			Sex	Plastron	Carapace	Shell	Shell	Mass	DOB	Comments
Date	PIT ID	Notch ID		Length	Length	Width	Height			
20-Apr-15	0A181B282F	3R10L	M	87	102	83	44	177	2014	Matapeake- Frederick (Inflamed cloaca)
20-Apr-15	0A181B2835	3R10L	J	76	90	75	40	128	2014	Centreville Middle School- Bauer
20-Apr-15	0A181B2836	9R3L	J	51	61	51	28	45	2014	MES Headquarters
20-Apr-15	0A181B283A	2R2L	J	71	85	68	37	100	2014	MES Headquarters
20-Apr-15	0A181B283C	3R12L	J	58	70	55	32	58	2014	Hurlock Elementary School- Douglas
20-Apr-15	0A181B2841	3R1L	J	82	95	81	41	155	2014	Churchill Elementary School- Taylor
20-Apr-15	0A181B2844	3R12L	J	87	98	83	45	176	2014	Kent Island High School- Ritz
20-Apr-15	0A181B2846	3R1L	J	84	97	82	42	165	2014	St. Michaels M.High School- Greer
20-Apr-15	0A181B2847	3R10L	J	37	44	37	22	19	2014	Queen Anne County- Mann
20-Apr-15	0A181B284C	2R2L	J	76	87	75	39	116	2014	Poplar Island- DiFatta
20-Apr-15	0A181B284D	3R1L	J	55	63	53	29	49	2014	Hurlock Elementary School- Douglas
20-Apr-15	0A181B284E	9R	J	52	61	49	27	40	2014	MES Headquarters
20-Apr-15	0A181B2857	2R	F	90	106	88	43	197	2014	Sandy Spring Friendship School
20-Apr-15	0A181B2858	3r10L	J	76	87	73	39	121	2014	Kent Island High School- Sadowski
20-Apr-15	0A181B2859	9R2L	J	64	76	64	33	81	2014	MES Headquarters
20-Apr-15	0A181B285B	3R12L	J	53	65	54	29	53	2014	MES Headquarters
20-Apr-15	0A181B285C	2R2L	J	65	75	61	35	77	2014	MES Headquarters
20-Apr-15	0A181B285D	2R	J	73	87	69	35	104	2014	Bushy Park
20-Apr-15	0A181B285F	3R1L	J	57	69	56	31	60	2014	MES Headquarters
20-Apr-15	0A181B2861	3R12L	J	64	77	63	35	83	2014	Easton High School- Detrich
20-Apr-15	0A181B2869	3R	J	87	101	80	41	153	2014	Huntingtown Elementary
20-Apr-15	0A181B286D	3R1L	J	75	87	72	39	119	2014	South Dorchester- Ruark
20-Apr-15	0A181B286E	3R1L	J	58	66	55	31	53	2014	Vienna Elementary School- Holbrook
20-Apr-15	0A181B2870	9R9L	J	74	83	73	39	111	2014	Poplar Island- DiFatta
20-Apr-15	0A181B2875	3L	F	98	111	92	44	223	2014	Mt. Harmony
20-Apr-15	0A181B287A	12R	F	93	106	90	44	205	2014	St. John the Evangelist
20-Apr-15	0A181B287B	3L	J	71	82	66	33	90	2014	Calvert Country
20-Apr-15	0A181B287C	1R 9L	J	67	83	65	37	100	2014	School of Incarnation
20-Apr-15	0A181B287D	9L	J	79	92	75	37	124	2014	Mutual Elementary
20-Apr-15	0A181B287E	9R	F	100	114	96	46	235	2014	Sunderland Elementary
20-Apr-15	0A181B2900	10L	F	100	120	97	50	296	2014	Paint Branch High School
20-Apr-15	0A181B2901	3R	J	85	100	82	41	149	2014	Poplar Island- DiFatta
20-Apr-15	0A181B2902	11R	J	77	90	72	37	120	2014	Dowell School
20-Apr-15	0A181B2903	10L	J	81	99	79	41	144	2014	Fairview Outdoor
20-Apr-15	0A181B2907	10 L	J	64	77	62	35	74	2014	William Shmitt Outdoor
20-Apr-15	3C344D4328	2R 12L	J	72	86	70	37	109	2014	Cape St. Claire- Velozo
20-Apr-15	3C37303249	1R 12R 9L	J	77	91	73	39	138	2014	Cape St. Claire
20-Apr-15	4C10562A50	1R1L	M	93	109	87	42	211	2014	Arnold Elementary School- Hartman
20-Apr-15	4C2E6F1D6C	2R10L	J	53	63	51	29	49	2014	George Fox Middle School- Thompson
20-Apr-15	4C33536865	12L	F	81	95	81	39	147	2014	Northeast High School- Imwald

Date	PIT ID	Notch ID	Sex	Plastron Length	Carapace Length	Shell Width	Shell Height	Mass	DOB	Comments
20-Apr-15	4C3357694A	1R12L	J	66	77	62	33	81	2014	Maryland City Elementary School- Nichols
20-Apr-15	4C33586629	2R3L	М	89	105	86	42	199	2014	Annapolis Middle School- Henry
20-Apr-15	4C33692528	3R 11L	J	58	68	54	31	59	2014	Southern Middle School- Rose
20-Apr-15	4C33741D30	2R 12L	J	78	91	77	39	134	2014	Crofton Elementary- Russel
20-Apr-15	4C33766515	2R 10L	J	76	90	75	39	136	2014	Crofton Elementary- Russel
20-Apr-15	4C33780644	1R 12L	J	76	85	71	36	119	2014	Overlook Elementary- Schmidt
20-Apr-15	4C3379091B	2R3L	J	48	56	45	26	32	2014	Marley Middle School- Jones
20-Apr-15	4C337B2D65	1R 12R 9L	J	69	82	64	37	99	2014	Cat North- Chow
20-Apr-15	4C337F5408	2R 10L	F	88	102	85	42	182	2014	Jones Elementary- Insley
20-Apr-15	4C342B1728	2R3L	J	65	77	63	34	79	2014	Magothy River Middle School- Junkins (Healing sore on neck)
20-Apr-15	4C34445236	3R9L	J	70	83	67	37	105	2014	Maryland City Elementary School- Nichols
20-Apr-15	4C344A5A4C	3R 11L	J	71	85	67	36	106	2014	Cat North- Chow
20-Apr-15	4C34535857	3R 3L	F	98	114	95	49	276	2014	Meade Middle- Teodosio
20-Apr-15	4C345A321C	12L	J	67	79	62	34	81	2014	Glen Burnie High School- Voll
20-Apr-15	4C34617319	3R 2L	J	68	79	62	35	82	2014	Arundel High School- Jewell
20-Apr-15	4C3465253C	10R	J	76	88	71	37	118	2014	Chesapeake Bay Middle School- Maciolek
20-Apr-15	4C34737538	1R 9L	J	68	78	60	35	80	2014	Central Elementary- Childs
20-Apr-15	4C3479116C	2L	F	89	101	84	44	208	2014	VanBakkelen- Hammond
20-Apr-15	4C34795321	9R1L	М	87	103	82	41	182	2014	Arnold Elementary School- Hartman
20-Apr-15	4C35100C3C	1R12R9L	F	83	98	83	44	192	2014	Severn River Middle School- Prestidge
20-Apr-15	4C35114C51	3R9L	J	60	72	57	33	69	2014	Magothy River Middle School- Junkins
20-Apr-15	4C3512570D	3R 9L	J	75	91	73	40	138	2014	Overlook Elementary- Schmidt
20-Apr-15	4C35227F33	9L	J	80	88	83	39	154	2014	Huntingtown High School
20-Apr-15	4C35270901	2R 10L	J	72	85	69	38	113	2014	Chesapeake Bay Middle School- Werre
20-Apr-15	4C3531276D	10R	J	65	77	61	35	79	2014	Arundel Middle School- Jones
20-Apr-15	4C35317D18	9R	J	68	79	66	32	86	2014	Mill Creek Middle School
20-Apr-15	4C353A7E2B	2R 10L	F	87	103	84	44	189	2014	Northeast High School- Imwald
20-Apr-15	4C35410540	3R 3L	J	61	72	60	33	66	2014	Central Elementary- Childs
20-Apr-15	4C35415369	2R 10L	J	69	82	66	35	93	2014	Severna Park High School- Hannahs
20-Apr-15	4C35435D66	2R 9L	J	87	102	81	40	161	2014	Old Mill High School- Helms
20-Apr-15	4C35512B47	1R12R9L	F	91	110	86	46	229	2014	Severn River Middle School- Greenlee
20-Apr-15	4C3551690A	1R12R9L	F	82	98	83	44	192	2014	Severn River Middle School- Prestidge
20-Apr-15	4C35542D71	2R 12L	J	70	81	63	34	157	2014	Severna Park High School- Hannahs
20-Apr-15	4C35637E65	10R	J	71	80	67	36	102	2014	Davidsonville Elementary School- Hoff
20-Apr-15	4C356A6204	1R12L	F	90	100	82	41	158	2014	Monarch Global- Brandon (ANOM V1)
20-Apr-15	4C35744825	3R 2L	J	85	98	83	40	156	2014	Chesapeake Bay Middle School- Maciolek
20-Apr-15	4C3575284B	2R 10L	J	57	69	53	29	55	2014	Hebron Harmon Elementary- Denbeck
20-Apr-15	4C36056D02	3R2L	J	62	71	58	32	65	2014	George Fox Middle School- Thompson
20-Apr-15	4C36074403	2L	F	99	114	94	49	288	2014	Woodside- Kirkendall

Date	PIT ID	Notch ID	Sex	Plastron Length	Carapace Length	Shell Width	Shell Height	Mass	DOB	Comments
20-Apr-15	4C36130A72	2R	F	89	106	88	44	183	2014	Lime Kiln Middle
20-Apr-15	4C36142A0E	1R 12L	J	61	70	57	29	60	2014	Piney Orchard- Beall
20-Apr-15	4C36154854	3R3L	J	69	81	65	36	90	2014	Odenton- Morris (ANOM V5)
20-Apr-15	4C36172A7D	1R 12L	j	68	77	64	32	83	2014	Rolling Knolls Elementary- Lanigan
20-Apr-15	4C361A3D41	9R 1L	J	74	85	71	35	112	2014	Overlook Elementary- McGowan
20-Apr-15	4C361C2F60	3R 11L	j	66	78	65	34	88	2014	Jones Elementary- Insley
20-Apr-15	4C361C6E3A	2R	F	97	113	92	46	238	2014	Naval Acad. Primary
20-Apr-15	4C36240961	9R1L	М	93	109	87	43	216	2014	Annapolis Middle School- Henry
20-Apr-15	4C36307060	2R 12L	J	65	79	62	34	88	2014	Glen Burnie High School- Voll
20-Apr-15	4C36317157	10R	J	73	82	67	34	90	2014	Hillsmere Elementary- Ferrer
20-Apr-15	4C36322A72	1R 1L	J	72	84	68	34	93	2014	Overlook Elementary- McGowan
20-Apr-15	4C3638116E	1R 12R 9L	J	66	77	61	35	79	2014	Southern Middle School- Rose
20-Apr-15	4C363B3D42	1R 10L	J	69	78	64	35	85	2014	Solley Elementary- Kerr
20-Apr-15	4C363C1B10	1R 9L	J	87	102	82	41	170	2014	VanBakkelen Elementary- Martin
20-Apr-15	4C36477126	11L	J	54	65	50	29	50	2014	Arundel Middle School- Jones
20-Apr-15	4C36594F63	3R11L	М	86	102	82	39	164	2014	Severn River Middle School- Prestidge
20-Apr-15	4C36595F1D	10R	J	68	78	62	34	83	2014	Edgewater Elementary School- Jessie
20-Apr-15	4C365A0864	1R 12L	J	58	68	55	30	56	2014	Oak Hill- Bloomfield
20-Apr-15	4C366D5A53	3R 2L	J	74	83	69	37	100	2014	Marley Elementary- Collins
20-Apr-15	4C36753E08	1R3L	J	82	92	76	41	148	2014	Folger Mckinsey- Bangert
20-Apr-15	4C367E6354	3R 11L	J	66	77	61	34	77	2014	Arundel High School- Jewell
20-Apr-15	4C367F3050	1R 1L	М	98	117	88	42	214	2014	Solley Elementary- Flanigan
20-Apr-15	4C37033A07	2R10L	F	88	103	83	43	192	2014	Davidsonville Elementary School- Perret
20-Apr-15	4C37043D75	1R11L	J	55	69	55	29	56	2014	Severna Park Middle School- Shelleman
20-Apr-15	4C370F556D	3R 9L	J	73	87	70	37	107	2014	Riviera Beach Elementary- Flohr
20-Apr-15	4C370F7263	1R 11L	М	88	105	89	42	195	2014	Solley Elementary School- Flanigan
20-Apr-15	4C37127B25	2L	J	73	86	73	37	113	2014	Hillsmere Elementary- Ferrer
20-Apr-15	4C3718687C	2R 10L	J	52	62	49	28	46	2014	Southshore Elementary School
20-Apr-15	4C371C7745	2R10L	F	94	111	94	46	237	2014	Lindale- Mauro
20-Apr-15	4C371D7C00	11L	J	77	94	76	39	144	2014	Hilltop Elementary- Day
20-Apr-15	4C37230C43	2L	J	66	80	65	36	91	2014	Chesapeake Bay Middle School- Werre
20-Apr-15	4C372D317D	1R 10L	J	60	72	62	32	70	2014	Benfield Elementary- Mullin
20-Apr-15	4C37301A0C	1R 3L	J	53	60	48	29	43	2014	Southern High School- West
20-Apr-15	4C3732601D	3R 9L	J	69	79	66	36	97	2014	Rolling Knolls Elementary- Lanigan
20-Apr-15	4C37337912	3R 3L	J	68	80	67	35	94	2014	Benfield Elementary- Mullin
20-Apr-15	4C37375B29	2R3L	J	59	69	57	31	64	2014	Severna Park Middle School- Shelleman
20-Apr-15	4C373D5745	3R 2L	J	54	64	53	29	49	2014	Southshore Elementary School
20-Apr-15	4C3744606C	10R	J	75	84	67	37	110	2014	Corkran- Kliendinst
20-Apr-15	4C374E4348	2R12L	J	79	95	75	39	136	2014	Monarch Global
20-Apr-15	4C375C1815	12L	J	63	73	60	33	75	2014	Edgewater Elementary School- Jessie

Terrapin Report - Appendix 3 67

Date	PIT ID	Notch ID	Sex	Plastron Length	Carapace Length	Shell Width	Shell Height	Mass	DOB	Comments
20-Apr-15	4C37655408	2R10L	J	82	97	79	42	165	2014	Folger Mckinsey- Bangert
20-Apr-15	4C3767431C	12L	J	53	64	52	28	50	2014	Hebron Harmon Elementary- Denbeck
20-Apr-15	4C37675362	2L	F	102	122	99	51	338	2014	Meade Middle- Teodosio
20-Apr-15	4C37713A7A	10R	F	87	99	80	42	178	2014	Ruth Eason- Angle
20-Apr-15	4C377E0938	3R 11L	J	68	81	65	34	93	2014	Solley Elementary- Kerr
20-Apr-15	4C38011E3C	1R 12L	J	74	86	70	37	111	2014	Riviera Beach Elementary- Flohr
20-Apr-15	4C38056B0D	1R 12L	J	71	82	67	36	95	2014	Marley Elementary- Collins
20-Apr-15	4C38062341	3R 11L	J	56	67	54	31	58	2014	Southern High School- West
20-Apr-15	4C386A4316	9L	J	66	77	63	33	84	2014	Windy Hill Elementary
20-Apr-15	4C386D4464	10R	J	54	64	51	30	49	2014	Oak Hill- Bloomfield
20-Apr-15	4C390C7960	3R 11L	J	75	89	75	38	137	2014	VanBakkelen Elementary- Hammond
20-Apr-15	4C39371337	11R	F	96	113	91	45	233	2014	Calvert High School
20-Apr-15	4C3937281B	3R 3L	J	82	96	81	41	159	2014	VanBakkelen Elementary- Martin
20-Apr-15	4C393C0159	1 R 1L	J	69	81	65	35	86	2014	Bates Middle School- Smith
20-Apr-15	4C393F1154	2R 12L	J	75	90	72	37	118	2014	Old Mill High School- Helms
20-Apr-15	4C39430F03	1R 9L	F	86	96	82	43	168	2014	Shipleys Choice Elementary- Webb
20-Apr-15	4C3948363F	2R 10L	F	86	99	81	45	175	2014	Ruth Eason- Angle
20-Apr-15	4C394B4C3A	2R 10L	F	85	99	81	43	175	2014	Hilltop Elementary- Day
20-Apr-15	4C39502B05	3R 9L	J	57	67	54	30	63	2014	Piney Orchard- Beall
20-Apr-15	4C396C3F41	3R9L	J	70	85	67	37	111	2014	Odenton- Morris
20-Apr-15	4C396E5F5C	9R 1L	J	67	78	64	33	84	2014	Bates Middle School- Smith
20-Apr-15	4C39785A62	2L	F	89	102	84	43	182	2014	Davidsonville Elementary School- Perret
20-Apr-15	4C3A013519	3R 2L	J	76	87	70	36	112	2014	Davidsonville Elementary School- Hoff
20-Apr-15	4C36430D72	1R 9L	J	66	77	61	35	79	2014	Chesapeake Bay Middle School